

Resin Java EE 6 Web Profile white paper

Page 1 of 14

RESIN APPLICATION SERVER
JAVA EE 6 WEB PROFILE

White paper
By Reza Rahman

Copyright © 2011 Caucho Technology, Inc. All rights reserved. All names are used for identification purposes only and may be
trademarks of their respective owners.

Resin Java EE 6 Web Profile white paper

Page 2 of 14

TABLE OF CONTENTS

Table of Contents .. 2

Abstract.. 3

Introduction... 3

Java EE 6 Web Profile .. 4

Resin and Java EE .. 6

Resin and Servlet Containers ... 7

The Resin Java EE 6 Web Profile Implementation .. 8

Contexts and Dependency Injection.. 9

Servlet 3... 9

EJB 3.1 Lite..10

Unit Testing/Embedded Containers ...11

Hessian Remoting..12

Seam 3 Support ..13

Spring Support ...13

Summary .. 13

About the Author .. 13

About Caucho Technology ... 14

Resin Java EE 6 Web Profile white paper

Page 3 of 14

ABSTRACT
Caucho Technology recently passed the Java EE 6 Web Profile Compatibility Test Kit (TCK) with the
Resin 4 application server en route to official certification from Oracle. This whitepaper discusses the
Java EE 6 Web Profile and how it fits with the development philosophy of Resin as well as the details of
our implementation including Resin extensions to the Java EE 6 Web Profile.

The Java EE 6 Web Profile is composed of a core subset of Java EE APIs geared towards a majority of
modern web applications. Resin’s implementation is focused on providing high quality
implementations of CDI, Servlet 3 and EJB 3.1 Lite. In addition to the Web Profile APIs like JSF 2, Servlet
3, CDI, EJB 3.1 Lite, JPA 2 and bean validation, Resin includes a lightweight JMS server, Hessian based
remoting, a JTA transaction manager, database connection pooling, built-in authentication providers,
security, clustering as well as an administration console.

CanDI, Caucho’s independent implementation of the CDI standard for next generation dependency
injection, serves as the foundation for Resin itself and enables many of the features that go beyond
the Java EE 6 APIs. This includes powerful integration with popular third-party APIs like JUnit, Struts 2,
Wicket, iBATIS, Quartz and Spring. CanDI also enables the use of all EJB annotations like
@TransactionAttribute, @Schedule and @Asynchronous outside EJBs in POJO beans – a feature we
hope to get standardized in Java EE 7.

INTRODUCTION
Resin enjoys a solid reputation for being one of the fastest, lightest and most stable application
servers in the industry supporting some of the most high traffic web sites in the world including
Salesforce, CNET and the Toronto stock exchange. The Java EE 6 Web Profile enables Caucho to create
a truly lightweight standards-based runtime that focuses on ease-of-use for web application
development. Indeed, Resin is the only major application server solely focused on the Web Profile.

The first section of this document covers the Java EE 6 Web Profile itself. The next section outlines our
perspectives on Java EE as well as Servlet containers like Tomcat and Jetty, focusing on our vision for
Resin 4. The final section covers our Java EE 6 Web Profile implementation including extended
features and APIs.

Resin Java EE 6 Web Profile white paper

Page 4 of 14

JAVA EE 6 WEB PROFILE
Much like other mainstream development platforms like .NET, Java EE attempts to provide a
comprehensive API set covering as many applications and use-cases as possible. As a result Java EE
has had an ever-expanding set of APIs gradually added to it over time. The problem is that until the
introduction of Profiles, Java EE has been a monolithic API set. This one-size-fits-all approach has
meant that most applications do not use a large number of APIs in Java EE. For example, most web
applications do not use remoting but do use the web tier APIs like Servlet, JSP and JSF. Similarly, SOA
centric "headless" applications might use features like messaging, remoting, SOAP and REST but have
no use for JSF or JSP. The heavyweight footprint of application servers that implement the entire Java
EE API set is a symptom of this underlying problem.

Profiles in Java EE 6 are designed to address this problem by defining sub-sets of APIs geared towards
particular types of applications. Following the previous examples, profiles geared towards web
applications and SOA applications might make sense. In fact, the Web Profile is the first and only
profile defined in Java EE 6 (the expectation is that other profiles will be defined going forward). The
Web Profile is composed of a complete set of Java EE APIs that is needed for a majority of modern web
applications. This includes APIs for the presentation tier, business tier, persistence tier, transactions,
security, context management, dependency injection, cross-cutting logic, constraint management
and testing. The following table outlines the specific APIs included in the Java EE 6 Web Profile and
their intended purpose:

API PURPOSE
JSF 2, Facelet, JSP, Servlet 3 Web tier

CDI, managed beans, interceptors Dependency injection, context management, cross-cutting
logic, events, extensibility, integration, testing

EJB 3.1 Lite Business tier, declarative and programmatic transactions,
declarative and programmatic security, testing

JTA Transaction management

JPA 2 Persistence tier

Bean validation Constraints management

Table 1. Java EE 6 Web Profile APIs

Resin Java EE 6 Web Profile white paper

Page 5 of 14

Like Profiles, EJB 3.1 Lite is a sub-set of the full EJB API. It includes stateless session beans, stateful
session beans, singleton beans, declarative and programmatic transactions, declarative and
programmatic security as well as an embedded container geared towards out-of-container testing.
EJB 3.1 Lite does not have support for message driven beans, asynchronous processing, scheduling,
REST (JAX-RS) end-points, SOAP (JAX-WS) end-points, RMI/CORBA based remoting as well as
backwards compatibility requirements for EJB 2.x.

Figure 1. Java EE and the Web Profile

The Java EE 6 Web Profile leaves out a number of APIs that are not used often in web applications such
as JAX-WS, JAX-RPC, JAXR, SAAJ, JAX-RS, JAXB, JMS, JAAS, JASPIC, JACC, JCA, JavaMail, the Java EE
Management Specification (JSR 77) and the Java EE Deployment Specification (JSR 88). The Web
Profile also only includes support for WAR files and not EAR files. Note Profiles do not stop a vendor
from adding APIs and features as they see fit. As we will discuss shortly, we have chosen to add a very
small number of Java EE APIs and features on top of the Web Profile. Specifically, we see value in
adding support for scheduling, asynchronous processing, messaging, message driven beans and
Hessian based remoting.

Resin Java EE 6 Web Profile white paper

Page 6 of 14

RESIN AND JAVA EE
The Resin team has always focused on delivering a lightweight, fast, reliable and easy-to-use
application server. We have also always respected the value in standardization, developer choice,
multilateral collaboration and having competing but compatible products. These ideas are clearly
factors in the success of server-side Java that builds on the good foundations of a portable, scalable,
type-safe programming language and leads to a lively industry ecosystem enriched by wide adoption,
open source, innovation, disciplined development practices and enterprise credibility. However,
before the Java EE 6 Web Profile, it was difficult to reconcile these concepts in Resin. The choices were
really split between either creating a lightweight Java application server or aiming for full standards
compliance. Resin has historically chosen the lightweight implementation route along the same lines
as Tomcat and Jetty, with some important differences we will discuss shortly.

The problems with earlier versions of Java EE are now well understood. They included an over-
emphasis on CORBA/remoting in EJB 1.x, the heavyweight programming paradigm in EJB 2.x, the
flawed persistence model in EJB 2.x entity beans, serious problems in portability as well as the
complexity in XML deployment descriptors. While Java EE 5 solved the issues around ease-of-use, we
still saw a number of practical roadblocks in the way of creating a really lightweight implementation
that Resin developers would find compelling.

Because of backwards compatibility requirements in EJB 3.0, it was still necessary to fully implement
EJB 2.x and RMI/CORBA remoting. Due to the absence of profiles, we would have been forced to
support bloated APIs like JAX-WS, JAX-RPC, JAXR, SAAJ, JACC, JAAS, JASPIC, JAXB, JCA, the Java EE
Management Specification (JSR 77) and the Java EE Deployment Specification (JSR 88). As a result, we
continued to primarily focus on the Servlet API instead of pursuing Java EE 5 compliance while still
supporting the annotation-driven programming model in EJB 3/JPA as well as maintaining
lightweight alternatives to RMI/CORBA such as Hessian.

With the Java EE 6 Web Profile, we are confident that we can deliver a fully standards compliant
version of Resin that is really on the mark in terms of features and usability. We are excited in creating
a very lightweight Java EE application server perhaps more compelling than any other server-side Java
development option with a great "just-works-out-of-the-box" development experience.

Resin Java EE 6 Web Profile white paper

Page 7 of 14

RESIN AND SERVLET CONTAINERS
While we are firm believers in lightweight development, we feel that taking the extreme approach of
simply implementing the Servlet specification and nothing else is the wrong set of trade-offs to make.
While this minimalist option seems good in theory, it quickly leads to a lot of easily avoidable
complexity for a majority of cases. The fundamental problem is that modern web applications use a lot
more than the Servlet API. In fact, there are very few non-legacy applications that use the Servlet API
directly. Most applications need a transaction manager, persistence mechanism and higher-level
presentation layer API, not to mention dependency injection, security, scheduling and crosscutting
logic. Some applications also need support for messaging as well as remoting via an efficient binary
protocol like Hessian.

As a result, development shops that go the plain Servlet engine route end up configuring numerous
third-party APIs on top of the minimal container to get these features. Even while using the most
efficient integration solution, configuring and maintaining these third-party APIs become tasks in their
own right, especially compounded by the number of applications that need to be configured in an ad-
hoc fashion. The complexity involved in such configuration tasks have very little to do with solving
business domain problems. In reality the configuration task is really the domain of an administrator or
integrator working at the system level rather than a developer working at the application level. This
complex development model is in stark contrast to platforms like Ruby on Rails which effectively
promote ease-of-use and convention-over-configuration. Indeed this development model is likely
sensible only in contrast to using a full-scale Java application server that is very heavy-weight or for
systems that are really very specialized.

Besides development APIs, a vast majority of enterprise applications also need scalability features like
resource/connection pools, security authentication providers, thread/process management,
bandwidth throttling, caching, clustering, load-balancing and distributed transactions as well as
management, monitoring and administration facilities. It is impossible or very difficult to add such
features to a plain Servlet container as a third-party extension. Moreover, adding such foundational
features on an a-la-carte basis takes away from the performance benefits to be achieved by having
intelligent centralized coordination and resource sharing at the application server level.

Lastly, having a cohesive runtime that "just works" in a majority of cases allows us to create a simple
vision covering all major application life-cycle stages including prototyping, development, testing,
deployment, performance tuning, upgrades, maintenance and support, much like Ruby on Rails.

Resin Java EE 6 Web Profile white paper

Page 8 of 14

For these reasons, we believe a lightweight Resin implementation of the Java EE 6 Web Profile makes
the right set of trade-offs by providing features that a majority of web applications need out-of-the-
box, minimizing the configuration burden and focusing on ease-of-use.

THE RESIN JAVA EE 6 WEB PROFILE IMPLEMENTATION
The basic Resin strategy to supporting the Java EE 6 Web Profile is to provide Caucho implementations
for core APIs and integrate best of breed pluggable open source implementations developed by other
responsible, reputable organizations where it best makes sense. This strategy allows us to focus on
delivering very high quality implementations where we can best add value to developers while not
needlessly duplicating effort and leveraging the Java EE open source ecosystem in a sensible way.

In line with this philosophy, we are providing independent Caucho implementations for managed
beans, interceptors, CDI, Servlet 3/JSP and EJB 3.1 Lite. Resin also includes its own high performance
JTA compatible transaction manager, a very lightweight JMS implementation as well as the Hessian
binary remoting protocol that offers better performance than RMI/CORBA and works over HTTP.
Building on these core APIs, Caucho will integrate the reference implementations for JSF 2, Facelets,
JPA 2 and bean validation. All of these implementations have been independently certified for Java EE
6 as part of the GlassFish application server.

Figure2. Resin Java EE 6 Web Profile implementation strategy.

Resin Java EE 6 Web Profile white paper

Page 9 of 14

Contexts and Dependency Injection
The Contexts and Dependency Injection for Java EE (CDI) API is one of the key parts of the Web
Profile. It provides robust context management including support for conversations, type-safe
next-generation generic dependency injection, stereotypes, interceptors, decorators,
lightweight events as well as a powerful SPI intended for building portable extensions. As
active participants in JSR 299, the Resin team played an important part in providing visionary
support for the CDI API. We are very proud to be offering a very high quality independent
implementation of CDI. Our implementation, CanDI is one of the three major implementations
of CDI, along with Apache's OpenWebBeans and Weld, the reference implementation from
JBoss. CanDI is the centerpiece for the Caucho implementation of the Java EE 6 Web Profile.
Indeed, many parts of the Resin application server itself have been written using CanDI.

A number of additions to CDI are included in CanDI. For example, we support a custom
@TransactionScoped/@ThreadScoped in addition to the standard @ApplicationScoped,
@SessionScoped, @RequestScoped and @ConversationScoped. We also plan to provide
portable extensions for integrating popular open source and standard tools that developers
will find useful. The possibilities include integration/ease-of-use CDI portable extensions for
JMS, JDBC, JavaMail, Struts 2, iBATIS and Quartz. We will also fully support all portable
extensions developed by the Apache and JBoss CDI projects on CanDI/Resin.

Servlet 3

Servlet 3 brings a major overhaul to this foundational Java EE API. The changes include full
support for annotations, pluggable web.xml fragments, programmatic addition of Servlets,
Filters and Listeners at runtime as well as asynchronous processing. While annotation support
is geared towards ease-of-use and the asynchronous processing capabilities add better
support for emerging paradigms like the real-time web, the rest of the changes are critical in
improving plug-ability for the rich set of third-party tools and frameworks that build on
Servlets such as JSF, Facelets, Wicket, Struts 2 and the like. Taken as a whole, these changes
will likely enable stronger innovation in the web tier based on the new capabilities in Servlet 3.
We have long focused on excellent support for the Servlet API and will continue to do so with
Servlet 3. In fact, it is one of our first APIs to pass the Compatibility Test Kit (TCK).

Resin Java EE 6 Web Profile white paper

Page 10 of 14

EJB 3.1 Lite
EJB 3.1 has both further ease-of-use elements as well as core features frequently requested by
developers. The changes include session bean optional interfaces, singleton beans with
concurrency control, cron-style declarative and programmatic timers, asynchronous bean
invocation, support for packaging EJBs in WARs, embedded container support for unit testing,
standardized global JNDI naming as well as the definition of EJB Lite. In addition to basic
support for EJB Lite, Resin includes support for EJB scheduling (@Schedule, @Timeout),
asynchronous processing (@Asynchronous), message driven beans (@MessageDriven) and
Hessian based remoting (@Remote).

In our view, one of the most important changes in EJB 3.1 is the redefinition of EJBs as simple
managed bean POJOs with additional services. We have taken this realignment to the logical
next step by allowing developers to use EJB annotations in CanDI managed beans in addition
to EJBs including the @TransactionAttribute, @Schedule, @Asynchronous, @RolesAllowed,
@PermitAll, @DenyAll, @RunAs, @Lock , @Startup and @Remote. Our hope is that this
capability will be standardized in Java EE 7. Below are two examples of this capability:

@ApplicationScoped
@TransactionAttribute(REQUIRED)

public class BidDao {

 // Resin thread-safe EntityManager proxy.
 @PersistenceContext

 private EntityManager entityManager;

 public void addBid (Bid bid) {

 entityManager.persist(bid);

 }

}

Figure 2. EJB Lite sample code 1.

Resin Java EE 6 Web Profile white paper

Page 11 of 14

@Startup

@ApplicationScoped

public class NewsLetterGenerator {

 @Schedule(dayOfMonth="L", month="*") // Last day of every month.

 public void generateMonthlyNewsLetter() {
 // Code to generate the monthly news letter goes here.

 }

}

Figure 3. EJB Lite sample code 2.

Unit Testing/Embedded Containers
Resin provides excellent out-of-container unit/integration testing support for JUnit 4. Testing
support will be based on the Resin embedded container built around CanDI, managed beans
and EJB 3.1 Lite. Using JUnit bootstrap mechanisms, the Resin test tools will inject
components under test directly into testing artifacts that can be run from the command-line
or IDE. The following code example shows these capabilities:

@RunWith(ResinBeanContainerRunner.class)

// Deployment overrides for the test.

@ResinBeanConfiguration(beansXml="beans-test.xml")

public class AccountServiceTest {

 @Inject

 private AccountService accountService;

 @Test

 public void testGetAccount() throws Exception {
 Account account = accountService.getAccount(1007);

 assertNotNull(account);

 }

}

Figure 4. Unit/integration testing with the Resin embedded container

Resin Java EE 6 Web Profile white paper

Page 12 of 14

While the Resin bean container supports CDI, managed beans, EJB and JPA, it does not start
the Servlet container for performance reasons. If you need support for JUnit based testing for
Servlets, JSP or JSF, it is possible to use full resin embedded version with JUnit as well – the
configuration is very similar to the example above with the ResinBeanContainerRunner being
replaced by ResinEmbedRunner. In addition, Resin will also support JBoss Arquillian for
testing.

Hessian Remoting
Hessian is an HTTP based binary communication protocol developed by Caucho. Hessian
offers better performance than RMI/CORBA, SOAP or REST. Since it is HTTP based, it can work
across firewalls much like web services. Because of these characteristics, we believe it is the
ideal communication protocol for remoting using Resin and Java EE 6. Resin will support
Hessian remoting through the EJB @Remote annotation as in the example below:

@Remote

public interface BidService {

 public void addBid(Bid bid);
}

@ApplicationScoped
public class DefaultBidService implements BidService {

 ...

}

Figure 5. Hessian Remoting example.

In addition to Hessian based remoting Resin also fully supports running Jersey, RESTEasy,
Metro or Apache CXF as third-party JAX-RS and JAX-WS web services frameworks.

Resin Java EE 6 Web Profile white paper

Page 13 of 14

Seam 3 Support
Seam 3 by JBoss is one of the most promising CDI based projects. Seam 3 includes CDI
portable extensions for XML configuration, JPA enhancements, JSF enhancements, Servlet
enhancements, JMS enhancements, REST enhancements, JavaScript remoting, declarative
exception handling, internationalization/localization, security, mail, cron, document
generation, GWT, Drools, jBPM, JBoss ESB and many others. With a strong focus on
performance and stability CanDI and Resin 4 are excellent platforms for running Seam 3.

Spring Support

A large number of Resin customers currently use the popular Spring framework. Caucho has
always provided and will continue to provide outstanding runtime support for the framework.
Indeed, we believe great opportunities for even better Spring framework integration exist
particularly via the common Dependency Injection for Java (JSR 330) annotations shared by
both CDI and Spring IoC. We will explore such innovative integration possibilities going
forward.

SUMMARY
Along with GlassFish and JBoss, Resin provides an excellent early implementation for Java EE 6. Unlike
other major application servers, Resin will not have an offering that implements the full Java EE
platform that we feel is heavyweight for the requirements of most server-side Java applications.
Instead, we will maintain our traditionally lightweight development philosophy and focus on the Web
Profile while still providing the ease-of-use, ease-of-configuration, ease-of-administration, usability,
scalability and performance that is often compromised with commodity Servlet containers. Visionary
implementations like CanDI enables us to go beyond the Java EE standard and fully leverage the Java
open source ecosystem as part of the evolution of the Resin developer community.

ABOUT THE AUTHOR
Reza Rahman is a Caucho engineer focusing on Resin.

Resin Java EE 6 Web Profile white paper

Page 14 of 14

Reza has over a decade of experience with consulting, enterprise architecture, technological
leadership and application development. He has been working with Java EE since its inception,
developing on almost every major application platform ranging from Tomcat to JBoss, GlassFish,
WebSphere and WebLogic. He has developed enterprise systems for companies like Motorola,
Comcast, Nokia, Guardian Life, Prudential, Independence Blue Cross, Citigroup, Accenture and GMAC
using EJB 2, Spring, EJB 3 and Seam. He is particularly interested in distributed systems, messaging,
middleware, persistence and machine learning.

Reza is the author of EJB 3 in Action <http://www.ejb3inaction.com> from Manning Publishing. He is a
frequent speaker at conferences and Java user groups including JavaOne and TSSJS. Reza is an
independent member of the Java EE 6 and EJB 3.1 expert groups.

ABOUT CAUCHO TECHNOLOGY
Caucho’s relentless quest for performance and reliability paved the way for Resin® to be a leading
global Open Source Java application server since 1998. Our engineers’ dedication to the development,
support and evolution of the Resin Java EE 6 Web Profile continues to uphold our reputation for
quality, performance and manageability. We've helped organizations worldwide including start-ups,
governments and Fortune 500 companies build and grow their business with one of the most flexible,
rock-solid and powerful application servers, Resin.

ABOUT RESIN APPLICATION SERVER
Delivering the most lightweight and scalable software is just the beginning. By employing agile
development with rigorous planning and testing, Caucho continuously aligns our product delivery to
meet our customers’ needs. Our focus is on the advancement of the Resin Java EE 6 Web Profile and
beyond to provide developers with a highly functional yet lightweight tool: an application server with
built-in Caching, Cloud Computing Support, Messaging and Clustering. Resin is a fast and clear-cut
Web Profile application server designed for deployment and management of both web-tier and
service oriented applications. From WebSocket to SOA, Resin provides current and next generation
enterprise features.

