Java Injection (CanDI) Pattern Tutorial

June 15, 2009

Contents

[Overview] 1
.1 _Tutorial Architecturel. 2
(1.2 Java Injection API| oL, 3

[2__Service Patternl 4
[2.1 Using Services from PHP and JSP| 5

[3 Resource XML Configuration Pattern| 6

[4 Startup Pattern| 9

[5 Plugin/Extension Pattern| 9

1 Overview

The four main CanDI patterns share a common goal: improve code with a
declarative injection style. When Java classes cleanly describe their dependen-
cies, their lifecycles, and their exports, they are self-documenting. You can read
the classes and understand how they will behave, i.e. you don’t need to read the
code side-by-side with XML configuration to understand the system’s behavior.

The custom, typesafe binding annotations are key to CanDI’s self-
documentation, because injection points clearly describe the resources or ser-
vices they expect with adjective-oriented annotations. Because the annotations
are true Java classes, they are documented in JavaDoc and verified by the com-
piler. The small number of meaningful adjectives means they don’t impose a
significant coding burden, and are well worth the small extra development time.

CanDI Application Patterns

PATTERN DESCRIPTION
Service Pattern Organize the application as a collec-
tion of services.

1.1 Tutorial Architecture 1 OVERVIEW

Resource Configuration Pattern Bind and resources with declara-
tive annotations and configure with
XML.

Startup Pattern Use @Startup beans to initialize ap-
plication state.

Plugin/Extension Pattern Discover plugin/extension classes for
a service.

This tutorial describes four main CanDI design patterns: services, resources,
startup and extensions. Services center an application’s design by encapsulating
management and data. Resources are the configurable interface between the
user and the application. Startup initializes the application. And extensions
allow sophisticated applications to tailor their behavior to the user’s needs.

1.1 Tutorial Architecture

@Current
@ApplicationScoped
MyServiceBean
@Blue / \
BlueResourceBean L | SetServlet GetServlet
@Current MyService @Current MyService
@Blue MyResource @Any Instance<MyResource>
—| @Red MyResource
@Red
RedResourceBean
@startup
MyStartupBean

Since the purpose of the service pattern is encapsulating state and manag-
ment for multiple clients, the tutorial shows a single service used by multiple
servlets and by PHP and JSP scripts. Services are typically singletons in the
application and use @Current to mark the binding.

The resource pattern configures a driver class and properties in XML for
an application resource. The resource tutorial uses MyResource as a general
resource API, like DataSource or EntityManager , and application specific
bindings @Red and @Blue . Because resource APIs are general, they need an
application-specific description to document their purpose in the code. Binding
annotations are simple, clear adjectives, and typically only a small number are
needed. The driver classes like BlueResourceBean are typically selected and
configured in an XML, like selecting and configuring a database.

Startup initialization is needed by most applications, and can use the CanDI
startup pattern to document the startup classes and avoid unnecessary XML.

1.2 Java Injection API 1 OVERVIEW

Because CanDI discovers beans through classpath scanning, you can create
startup beans with just a @Startup annotation and a @PostConstruct method.

A plugin or extension capability can improve the flexibility of many appli-
cations, even if designed for internal use. The plugin pattern uses CanDI’s
discovery process for the plugin capability without requiring a new infrastruc-
ture. The tutorial reuses the MyResource API as a plugin API and grab all
implementations using the CanDI Instance interface and the @Any annotation.

1.2 Java Injection API

The most important CanDI classes are just three annotations: @Current ,
©@BindingType and @ApplicationScoped , because many applications will pri-
marily use the service and resource patterns. By using these three annotations
effectively, you can improve the readability and maintainability of your appli-
cation’s services and resources.

Service and Resource Pattern CanDI classes

ANNOTATION/CLASS DESCRIPTION
"~ @ApplicationScoped scope annotation marking the service
as a singleton
@BindingType descriptive application bindings are
marked with this meta-annotation
~ @Current Default binding for unique beans

(service pattern).

Applications which provide scripting access to services or resources will use
the @Named annotation to provide a scripting name for the beans.

Scripting Support CanDI classes

_ANNOTATION/CLASS DESCRIPTION
Named Scriping and JSP/JSF EL access to
CanDI beans (service pattern)

The startup pattern uses two additional annotations, @Startup to mark the
bean as needing creation on container start, and @PostConstruct marking a
method to be initialized.

Startup Pattern CanDI classes

ANNOTATION/CLASS DESCRIPTION

~ @Startup Starts a bean when the container
starts.

" @PostConstruct Calls an initialization method the

bean is created.

http://caucho.com/resin-javadoc/javax/enterprise/context/ApplicationScoped.html
http://caucho.com/resin-javadoc/javax/enterprise/inject/BindingType.html
http://caucho.com/resin-javadoc/javax/enterprise/inject/Current.html
http://caucho.com/resin-javadoc/javax/enterprise/inject/Named.html
http://caucho.com/resin-javadoc/javax/ejb/Startup.html
http://caucho.com/resin-javadoc/javax/annotation/PostConstruct.html

2 SERVICE PATTERN

A plugin or extension architecture uses two additional CanDI classes to
easily find plugins discovered during CanDI’s classpath scanning. Instance<T>
provides an iterator over all the discovered and configured beans, and @Any
selects all beans independent of their @indingType .

Plugin/Extension Pattern CanDI classes

ANNOTATION/CLASS DESCRIPTION
" Instance<T> Programmatic access to all imple-
mentations of an interface.
@Al Selects all matching beans for an in-
terface.

2 Service Pattern

Because services are often unique in an application, the service interface is
generally enough to uniquely identify the service. In CanDI, the @Current
annotation injects a unique service to a client class. A declarative style applies
to both the service declaration and the service use, by annotating the service
scope as @ApplicationScoped , and annotating the client injection as @Current
. By describing the function on the class itself, CanDI’s annotations improve
the readability and maintainability of service classes.

package example;

import javax.enterprise.inject.Current;

public class GetServlet extends HttpServlet {
private @Current MyService _service;

Example: GetServlet. java

Users of the service will access it through an interface like MyService . The
implementation will be a concrete class like MyServiceBean . The interface
API in CanDI is a plain Java interface with no CanDI-specific annotations or

references.

http://caucho.com/resin-javadoc/javax/enterprise/inject/Instance.html
http://caucho.com/resin-javadoc/javax/enterprise/inject/All.html

2.1 Using Services from PHP and JSP 2 SERVICE PATTERN

package example;

public interface MyService {
public void setMessage (String message) ;

public String getMessage () ;
}

Example: MyService. java

All the information relevant to the class deployment is on the class itself, be-
cause the service implementation is discovered through CanDI’s classpath scan-
ning. In other words, The service’s deployment is self-documenting. Since ser-
vices are generally singletons, they will typically have the @ApplicationScoped
annotation. Other annotations are optional and describe the service registra-
tion or behavior. For example, the tutorial uses the @Named tag, because the
test. jsp and test.php need a named reference.

Scripting beans use the @Named annotation on a CanDI bean for integration
with the JSP EL expression language and with PHP. Nonscripting beans do not
declare a @Named annotation because CanDI uses the service type and binding
annotations for matching.

package example;

import javax.enterprise.context.ApplicationScoped
import javax.enterprise.inject.Named;

@ApplicationScoped

@Named ("myService")

public class MyServiceBean implements MyService {
private String _message = "default";

public void setMessage (String message)
{
_message = message;

}

public String getMessage ()
{
return _message;

}

’Example: MyServiceBean.java‘

2.1 Using Services from PHP and JSP

CanDl is designed to integrate closely with scripting languages like PHP and
JSP. The scripting languages locate a CanDI service or resource using a string,

3 RESOURCE XML CONFIGURATION PATTERN

because scripting lacks the strong typing needed for full dependency injection.
As mentioned above, the name of a CanDI service is declared by the @Named
anntation on the bean itself. The PHP or JSP code will use the name to obtain
a reference to the bean. For PHP, the function call is java_bean as follows:

<?php
SmyService = java_bean ("myService");
echo $myService->getMessage () ;

?>

’Example: test.php‘

While PHP has a function access to the CanDI service or resource, JSP
and JSF grab the CanDI bean with using the JSP expression language. Any
CanDI bean with a @Named annotation automatically becomes available to EL
expressions as follows:

message: ${myService.message}

’Example: test.jsp‘

3 Resource XML Configuration Pattern

Resources like databases, and queues fit multiple roles in an application
and need configuration and description beyond their generic DataSource and
BlockingQueue APIs. While services are generally unique and can use the
@Current binding, resources will generally create custom @BindingType anno-
tations to identify and document the resource.

CanDI encourages a small number of binding annotations used as adjectives
to describe resources. A typical medium application like a mail list manager
might use half a dozen custom binding adjectives, and may need fewer or more
depending on the number of unique resources. Each database, queue, mail, and
JPA EntityManager will generally have a unique name. If users need customiza-
tion and configuration of internal resources, you may need additional binding
types. If the application has a single database, it might only have one binding
annotation, or might even use @Current .

The purpose of the binding annotation is to self-document the resource
in the client code. If the application uses @ShoppingCart database and a
@ProductCatalog database, the client code will bind by their description. The
code declares its dependencies in a readable way, and lets CanDI and the con-
figuration provide the resource it needs.

3 RESOURCE XML CONFIGURATION PATTERN

The tutorial has @Red resource, configured in XML because the user might
need to customize the configuration. The resource client, SetServlet , uses the
adjective annotation in the field declaration as follows:

public class SetServlet extends HttpServlet {
private @Red MyResource _red;
private @Blue MyResource _blue;

Example: SetServlet.java

The XML is short and meaningful, because it’s only required for customiza-
tion, not for wiring and binding. Databases and JMS queues will need to config-
ure the database driver and add the binding adjective. Applications resources
can also be configured in XML if exposing the configuration is useful to your
users, but unique internal classes like most services will stay out of the XML.
In our example, we let the users configure the data field of the resource and let
them choose the implementation class.

The XML configuration for a bean needs three pieces of data: the driver
class, the descriptive binding annotation, and any customization data. Be-
cause the driver is the most important, CanDI uses the class as the XML tag
and uses the package as the XML namespace. While scanning the XML, the
driver class is top and prominent, reflecting its importance. In the example,
<example:BlueResourceBean>> is the driver class.

<example:BlueResourceBean xmlns:example="urn:java:example">

</example:BlueResourceBean>

’Example: BlueResourceBean instance configuration

In CanDI, the binding annotation is also an XML tag, represented by its
classname and package. In CanDI, classes and annotations get XML tags with
camel-case names matching the classname, and XML for properties are lower
case. The case distinguishes annotations from properties in the XML, improving
XML readability.

<example:Blue xmlns:example="urn: java:example"/>

‘Example: @Blue annotation configuration‘

Properties of a resource use the standard beans-style names, so
<example:data> sets the bean’s setData property. CanDI converts the XML
string value to the property’s actual value. In this case, the conversion is trivial,

3 RESOURCE XML CONFIGURATION PATTERN

but CanDI can convert to integers, doubles, enumerations, classes, URLs, etc.
Beans have all the configuration capabilities as Resin beans in the resin.xml and
resin-web.xml, because Resin uses CanDI for its own internal configuration.

<web—-app xmlns="http://caucho.com/ns/resin"
xmlns:example="urn: java:example">

<example:BlueResourceBean>

<example:Blue/>

<example:data>blue resource</example:data>
</example:BlueResourceBean>

<example:RedResourceBean>

<example:Red/>

<example:data>red resource</example:data>
</example:RedResourceBean>

</web-app>

Example: resin-web.xml

Binding types should generally be descriptive adjectives, so it can describe
the injection clearly. Anyone reading code should understand immediately which
resource it’s using. The tutorial’s @Blue binding annotation itself is a normal
Java annotation marked by a CanDI @BindingType annotation. Because of
its importance and because there are only a small number of custom annota-
tions, it’s important to spend time choosing a good descriptive name for the
annotation.

package example;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.x;
import java.lang.annotation.x;

import javax.enterprise.inject.BindingType;

@BindingType

@Documented

@Target ({TYPE, METHOD, FIELD, PARAMETER})
@Retention (RUNTIME)

public @interface Blue {

}

Example: Blue.java‘

The resource implementation itself is straightforward. When the resource is
a singleton, it will need a @ApplicationScoped annotation, just like a service.
By default, CanDI will inject a new instance of the bean at every injection point.

5 PLUGIN/EXTENSION PATTERN

package example;

public class BlueResourceBean {
private String _data;

public void setData (String data)
{

_data = data;
}

’Example: BlueResourceBean. java

4 Startup Pattern

The @Startup annotation marks a bean as initializing on server startup. Be-
cause the startup bean is discovered through classpath scanning like the other
beans, the initialization is controlled by the startup class itself. In other words,
looking at the startup class is sufficient, because it doesn’t rely on XML for
startup. The startup bean uses the @PostConstruct annotation on an initial-
ization method to start initialization code.

package example;

import javax.annotation.PostConstruct;
import javax.ejb.Startup;
import javax.enterprise.inject.Current;

@Startup
public class MyStartupBean {
private @Current MyService _service;

@PostConstruct
public void init ()
{
_service.setMessage (this + ": initial value");

}

’Example: MyStartupBean. java

5 Plugin/Extension Pattern

A plugin or extension architecture can make an application more flexible and
configurable. For example, a filtering system, or blueprints or custom ac-
tions can add significant power to an application. The plugin pattern uses
CanDTI’s discovery system to find all implementations of the plugin interface.

5 PLUGIN/EXTENSION PATTERN

The Instance iterator together with the special @Any binding annotation gives
all implementations of a resource.

The CanDI Instance interface has two uses: return a unique instance pro-
grammatically with the get () method, and list all instances for a plugin capa-
bility. Since Instance implements the JDK’s Iterable interface, you can use
it in a for loop. Each returned instance obeys the standard CanDI scoping
rules, either returning the single value for @ApplicationScoped singletons, or
creating a new instance for the default.

The @Any annotation works with Instance to select all values. Because
bindings default to the @Current binding type, we need to override the default
to get all instances.

package example;

import javax.enterprise.inject.Any;
import javax.enterprise.inject.Instance;

public class GetServlet extends HttpServlet {
@Any Instance<MyResource> _resources;

public void service (HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException

{

PrintWriter out = response.getWriter();
for (MyResource resource : _resources) {
out.println("resource: " + resource);

Example: GetServlet.java

10

	Overview
	Tutorial Architecture
	Java Injection API

	Service Pattern
	Using Services from PHP and JSP

	Resource XML Configuration Pattern
	Startup Pattern
	Plugin/Extension Pattern

