
Distributed and Persistent Sessions in PHP

Caucho Technology, Inc.

July 2006



Abstract

Quercus, Caucho Technology’s 100% Java implementation of PHP,
now offers distributed and persistent session management for PHP
developers. This technology is built on the solid foundation of Resin,
Caucho’s proven, high-performance application server. Quercus’s
session management implementation maintains compatibility with ex-
isting applications while at the same time seamlessly adding the ability
to distribute and load balance sessions for increased performance and
reliability. Truly distributed PHP applications are now possible with
Quercus.

Introducing Quercus

Resin Application Server

Java Virtual Machine

Quercus
Servlet

Web
Application

PHP
Script

PHP
Script

The Quercus/Resin
software stack

Quercus is Caucho’s clean-room implementation

of PHP5 in Java. With Java-based PHP, developers

now have the ability to incorporate the power

of Java into their existing PHP applications as

well as create a PHP presentation layer for their

existing Java applications. Quercus also leverages

the stability and security of Java, making PHP

more dependable in enterprise applications. Many

popular PHP applications are already running on

Quercus, including the Drupal content manage-

ment system and MediaWiki.

PHP Sessions – Existing Technology

The existing C-based PHP implementation manages sessions by storing

and loading session data directly to and from the file system. This

infrastructure does not use in-memory session caching for improved

performance and does not easily lend itself to distributing sessions over

several servers or a cluster. There is an option to use shared memory

managed sessions, but this feature does not guarantee safe concurrent

session accesses.

Distributed and Persistent PHP Sessions

From technical standpoint, Quercus runs as Java servlet in Caucho’s

Resin application server. Resin is used by over 5000 customers because it

provides the performance and reliability they need for enterprise applica-

tions. Quercus is able to offer many of the benefits and features of Resin

to PHP developers.



Among these many features is advanced session management. Resin

offers a wide range of solutions for session management from simple in-

memory and file system based storage to enterprise-ready database and

clustered configurations. Using the existing PHP session API, Quercus

makes these options available to developers without having to change their

code. In all of these configurations, concurrent operations are handled

safely.

For the clustered configuration, Resin groups logical sets of servers

to maintain a distributed, persistent session store used by Resin and

Quercus. Each server has both an in-memory session cache as well as

a persistent backing store using the hard disk. In the figure below, there is

a cluster with 4 servers. The Resin load balancer sits between the cluster

and the clients. Every session that is created is assigned a primary server.

When the load balancer receives a request from a client, it first checks the

primary server for the session associated with the request. Sessions also

have 1-2 randomly chosen backup servers which store the session in the

event that the primary fails. Because sessions are assigned to servers in

this configuration, they are called sticky sessions.

Server A

Memory
Cache

Durable
Storage

Server B

Memory
Cache

Durable
Storage

Server C

Memory
Cache

Durable
Storage

Server D

Memory
Cache

Durable
Storage

Resin
Load

Balancer

Client

Client

Client

PHPSESSID=
abdXYZ

PHPSESSID=
bacXYZ

PHPSESSID=
cdaXYZ

A Quercus/Resin load balanced cluster

The example above shows only 4 servers, but Resin’s sticky sessions

make it possible to scale to any large cluster configuration. The number

of backups for each session remains the same regardless of the size

of the cluster, meaning that adding servers to a cluster only increases

the capacity of the session management system, not the complexity.

Specifically, the network traffic required to access a single session is the

same whether the cluster has 4 or 64 servers. In addition, random backups



mean the session management system is able to survive the failure of any

2 servers in a cluster before losing a single session.

Another possible approach for session storage is to use a shared

database. In fact, implementing this method may be possible using a

purely PHP-based solution, though such an approach will not have the

benefit of in-memory caching. Resin offers database-backed sessions with

in-memory caching for those users who want this capability. However,

many applications already have a high database load without also being

called upon to manage sessions. Using the Resin clustered session store

not only avoids this additional load, it also distributes the load of session

management across all the servers. Using the Resin load balancer also

gives locality to session accesses.

Feature Comparison

Feature Quercus PHP

Easy Java integration ✓

Memory cached sessions ✓

File backed sessions ✓ ✓

Database backed sessions ✓ ✓

In-memory caching ✓

Distributed sessions ✓

Safe concurrent sessions ✓

Number of survivable failures 2 0

Availability

The Quercus session management described in this white paper will be

available in Resin 3.0.20. Advanced features such as the database backed

sessions, distributed cluster-backed sessions, and load balancing are

available in the Professional version of Resin.


