

RIAs with Comet and
Critical Updates in

Enterprise Environments

Emil Ong
Chief Evangelist

Caucho Technology
emil@caucho.com

What are critical updates?

 Updates sent from the server to the client
 Time-sensitive updates
 Sources include

− Updates from a service external to the server
− Updates from users
− Updates from users and the server
− Updates from internal network sources

Applications with Critical Updates:
Financial

 Updates from external service

Applications with Critical Updates:
Chat

 Updates from other users

Applications with Critical Updates:
Games

 Updates from other users and server

Applications with Critical Updates:
Network administration

 Updates from internal network sources

Approaches to Critical Updates:
Polling

 Polling
− Client periodically checks with server for new

updates using RPC or web services
− Poll too little: May get updates too late, may get

event “clumping”
− Poll too much: May use server resources

unnecessarily when there are no new updates
− Too much or too little depends on the events –

the client has no way of knowing!

Problems with Polling

Approaches to Critical Updates:
Comet

 Comet (a.k.a server-push, reverse Ajax)
− Client makes initial registration request
− Server sends updates to client
− Updates get to client as they happen
− Requires persistent connection

Comet in action

Developer-focused Comet

 Comet is a new way of thinking for many
application developers

− Resin Comet makes the transition easier with
an evolutionary API based on Java Servlets

 With a traditional server, you may get
excessive threads or have to manage thread
pool manually

− Resin Comet handles the thread
management for you

Resin's Comet API and
Infrastructure

 Similar to Java Servlet API
 Resource management is automatic:

− Threads are pooled in the background
− Developers can worry about client state instead of

threads
 Two main API classes:

− CometServlet – handles communication with client
− CometController – encapsulates per-client state

Basic Comet Architecture

Event Generator:
Implementation Examples

 JMS messages
 SEDA pipeline

− Mule
 Network monitors

− SNMP
− Firewall

 Web services
− SOAP

Basic Comet Architecture

CometServlet

 CometServlet – client communication
 Explicit code separation between initial and

subsequent communication
− Handle the initial connection

 service(ServletRequest,ServletResponse,
 CometController)

− Send updates to the client
 resume(ServletRequest,ServletResponse,
 CometController)

CometServlet

 Evolutionary API approach:
− Uses Servlet as a foundation
− Standard Servlet idioms still apply
− Matching Filter API (adds doResume())

 Idea of continuing communication built into API
− Have formalized resume() rather than simply

holding open the client stream

Basic Comet Architecture

CometController

 CometController - manages per-client state
− State maintenance

 getAttribute(String)
 setAttribute(String, Object)

− Send updates
 wake()

CometController

 New concurrency primitive
 Essentially creates a blocking queue to the

client
 Think: java.util.concurrent
 Gives a handle to the client directly to the

service
 Client can be a “stage” in a SEDA

CometController offers Flexibility

 Allows complex interactions with clients
− Broadcast
− Unicast
− Subscription-based

CometController Flexibility:
Broadcast

 Chat room

CometController Flexibility:
Unicast

 Instant messaging

CometController Flexibility:
Subscription-based

 News
 Stocks

Demo

Demo Architecture

Demo Architecture (cont.)

Conclusion

 Comet approaches are becoming necessary for
certain classes of applications

 Resin's Comet API and infrastructure:
− Are familiar to Java Servlet developers
− Offer a concurrency primitive that is based on client

connections
− Remove the need to worry about threads at

development time

Where to find Resin

http://www.caucho.com/

Questions?

Thank you!

