

Published on Javalobby (http://java.dzone.com)
CDI Dependency Injection - Tutorial II - Annotation Processing and Plugins
By rhightower
Created 2011/04/05 - 10:20am

CDI provides a pluggable architecture allowing you to easily process your own
annotations. Read this article to understand the inner workings of CDI and why this JSR is
so important.

CDI simplifies and sanitizes the API for DI and AOP like JPA did for ORMs. Through its
use of Instance and @Produces, CDI provides a pluggable architecture. This is a jaw
dropping killer feature of CDI. Master this and you start to tap into the power of CDI. The
last article [1] was just to lay the ground work to the uninitiated for this article.

This article continues our tutorial of dependency injection with CDI [1].

This article covers:

How to process annotations for configuration (injection level and class level)
How to use an annotation for both injection and configuration (@Nonbinding)
Using Instance to manage instances of possible injection targets
CDI's plugin architecture for the masses

With this pluggable architecture you can write code that finds new dependencies
dynamically. CDI can be a framework to write frameworks. This is why it is so important
that CDI was led through the JSR process.

Just like last time, there are some instructions on how to run the examples: Source code
for this tutorial [2], and instructions [3] for use. A programming article without working sample
code is like a sandwich with no condiments or dry toast without jelly.

Advanced CDI tutorial

The faint of heart stop here. All of the folks who want to understand the inner workings of
CDI continue. So far, we have been at the shallow, warm end of the pool. Things are about
to get a little deeper and colder. If you need to master CDI, then this article if for you. If you
don't know what CDI is then read the first CDI DI article [1].

Advanced: Using @Produces and InjectionPoint to create
configuration annotations

Our ultimate goal is to define an annotation that we can use to configure the retry count on
a transport. Essentially, we want to pass a retry count to the transport.

We want something that looks like this:

Code Listing: TransportConfig annotations that does configuration

@Inject @TransportConfig(retries=2)
private ATMTransport transport;

(This was my favorite section to write, because I wanted to know how to create a
annotation configuration from the start.)

Before we do that we need to learn more about @Produces and InjectionPoints. We are
going to use a producer to read information (meta-data) about an injection point. A major
inflection point for learning how to deal with annotations is the InjectionPoints. The
InjectionPoints has all the metadata we need to process configuration annotations.

An InjectionPoint [4] is a class that has information about an injection point. You can learn
things like what is being decorated, what the target injection type is, what the source
injection type, what is the class of the owner of the member that is being injected and so
forth.

Let's learn about passing an injection point to @Produces. Below I have rewritten our
simple @Produces example from the previous article [1], except this time I pass an
InjectionPoint argument into the mix.

Code Listing: TransportFactory getting meta-data about the injection point

package org.cdi.advocacy;

import javax.enterprise.inject.Produces;
import javax.enterprise.inject.spi.InjectionPoint;

public class TransportFactory {

 @Produces ATMTransport createTransport(InjectionPoint injectionPoint) {

 System.out.println("annotated " + injectionPoint.getAnnotated());
 System.out.println("bean " + injectionPoint.getBean());
 System.out.println("member " + injectionPoint.getMember());
 System.out.println("qualifiers " + injectionPoint.getQualifiers());
 System.out.println("type " + injectionPoint.getType());
 System.out.println("isDelegate " + injectionPoint.isDelegate());
 System.out.println("isTransient " + injectionPoint.isTransient());

 return new StandardAtmTransport();
 }

}

Now we just run it and see what it produces. The above produces this output. Output

annotated AnnotatedFieldImpl[private org.cdi.advocacy.ATMTransport org.cdi.advocacy.A
bean ManagedBeanImpl[AutomatedTellerMachineImpl, {@javax.inject.Named(value=atm), @De
member private org.cdi.advocacy.ATMTransport org.cdi.advocacy.AutomatedTellerMachine
qualifiers [@Default()]
type interface org.cdi.advocacy.ATMTransport
isDelegate false
isTransient false
deposit called
communicating with bank via Standard transport

It appears from the output that annotated tells us about the area of the program we
annotated. It also appears that bean tells us which bean the injection is happening on.

From this output you can see that the annotated property on the injectionPoint has
information about which language feature (field, constructor argument, method argument,
etc.). In our case it is the field org.cdi.advocacy.AutomatedTellerMachineImpl.transport.
is being used as the target of the injection, it is the thing that was annotated.

From this output you can see that the bean property of the injectionPoint is being used to
describe the bean whose member is getting injected. In this case, it is the
AutomatedTellerMachineImpl whose is getting the field injected.

I won't describe each property, but as an exercise you can.

Exercise: Look up the InjectionPoint in the API documentation [4]. Find out what the other
properties mean. How might you use this meta-data? Can you think of a use case or
application where it might be useful? Send me your answers on the CDI group mailing list
[5]. The first one to send gets put on the CDI wall of fame. (All others get honorable
mentions.)

Drilling further you can see what is in the beans and annotated properties.

Code Listing: TransportFactory.createTransport drilling further into the meta-data about
the injection point

 @Produces ATMTransport createTransport(InjectionPoint injectionPoint) {

 System.out.println("annotated " + injectionPoint.getAnnotated());
 System.out.println("bean " + injectionPoint.getBean());
 System.out.println("member " + injectionPoint.getMember());
 System.out.println("qualifiers " + injectionPoint.getQualifiers());
 System.out.println("type " + injectionPoint.getType());
 System.out.println("isDelegate " + injectionPoint.isDelegate());
 System.out.println("isTransient " + injectionPoint.isTransient());

 Bean<?> bean = injectionPoint.getBean();

 System.out.println("bean.beanClass " + bean.getBeanClass());
 System.out.println("bean.injectionPoints " + bean.getInjectionPoints());
 System.out.println("bean.name " + bean.getName());
 System.out.println("bean.qualifiers " + bean.getQualifiers());
 System.out.println("bean.scope " + bean.getScope());
 System.out.println("bean.stereotypes " + bean.getStereotypes());
 System.out.println("bean.types " + bean.getTypes());

 Annotated annotated = injectionPoint.getAnnotated();
 System.out.println("annotated.annotations " + annotated.getAnnotations());
 System.out.println("annotated.annotations " + annotated.getBaseType());
 System.out.println("annotated.typeClosure " + annotated.getTypeClosure());

 return new StandardAtmTransport();
}

Now we are cooking with oil. Throw some gas on that flame. Look at the wealth of
information that the InjectionPoint defines.

Output

...
bean.beanClass class org.cdi.advocacy.AutomatedTellerMachineImpl
bean.injectionPoints [InjectionPointImpl[private org.cdi.advocacy.ATMTransport org.cd
bean.name atm
bean.qualifiers [@javax.inject.Named(value=atm), @Default(), @Any()]
bean.scope interface javax.enterprise.context.Dependent
bean.stereotypes []
bean.types [class org.cdi.advocacy.AutomatedTellerMachineImpl, interface org.cdi.advo
annotated.annotations AnnotationSet[@javax.inject.Inject()]
annotated.annotations interface org.cdi.advocacy.ATMTransport
annotated.typeClosure [interface org.cdi.advocacy.ATMTransport, class java.lang.Objec
...

We see that bean.beanClass gives up the class of the bean that is getting the injected field.
Remember that one, we will use it later.

We can see that bean.qualifiers gives up the list of qualifiers for the
AutomatedTellerMachineImpl.

We can also see that annotated.annotations gives us the list of annotations that are
associated with the injected field. We will use this later to pull the configuration annotation
and configure the transport with it.

Exercise: Look up the Bean and Annotated in the API documentation [6]. Find out what the
other properties mean. How might you use this meta-data? Can you think of a use case or
application where it might be useful? Send me your answers on the CDI group mailing list
[5]. The first one to send gets put on the CDI wall of fame. (All others get honorable
mentions.)

Ok now that we armed with an idea of what an Injection point is. Let's get configuring our
transport.

First let's define an TransportConfig annotation. This is just a plain runtime annotation as
follows:

Code Listing: TransportConfig an annotation used for configuration

package org.cdi.advocacy;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

@Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface TransportConfig {
 int retries() default 5;
}

Notice that this annotation has one member retries, which we will use to configure the

ATMTransport (transport).

Now go ahead and use this to decorate the injection point as follows:

Code Listing: AutomatedTellerMachineImpl using TransportConfig to configure retries

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @TransportConfig(retries=2)
 private ATMTransport transport;

Once it is configured when you run it, you will see the following output from our producer:

Output

annotated.annotations AnnotationSet[@javax.inject.Inject(), @org.cdi.advocacy.Transpo

This means the annotation data is there. We just need to grab it and use it. Stop and
ponder on this a bit. This is pretty cool. The producer allows me to customize how
annotations are consumed. This is powerful stuff and one of the many extension points
available to CDI. CDI was meant to be extensible. It is the first mainstream framework that
encourages you to consume your own annotation data. This not some obscure framework
feature. This is in the main usage.

Please recall that the injectionPoint.annotated.annotations gives us the list of
annotations that are associated with the injected field, namely, the transport field of the
AutomatedTellerMachineImpl. Now we can use this to pull the configuration annotation and
configure the transport with it. The party is rolling now.

Now we need to change the transport implementations to handle setting retires. Since this
is an example, I will do this simply by adding a new setter method for retires (setRetries)
to the ATMTranport interface like so:

Code Listing: ATMTransport adding a retries property

package org.cdi.advocacy;

public interface ATMTransport {
 public void communicateWithBank(byte[] datapacket);
 public void setRetries(int retries);
}

Then we need to change each of the transports to handle this new retries property as
follows:

Code Listing: StandardAtmTransport adding a retries property

package org.cdi.advocacy;

public class StandardAtmTransport implements ATMTransport {

 private int retries;

 public void setRetries(int retries) {
 this.retries = retries;
 }

 public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via Standard transport retries="
 }

}

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author
This article was written with CDI advocacy in mind by Rick Hightower [7] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [8].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [9], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [10] - Seam Weld [11] - Apache OpenWebBeans [12]

Now we just change the producer to grab the new annotation and configure the transport
as follows: (For clarity I took out all of the Sysout.prinltns.)

Code Listing: TransportFactory using the annotation configuration to configure a new
instance of the transport

package org.cdi.advocacy;

...
import javax.enterprise.inject.spi.Annotated;
import javax.enterprise.inject.spi.Bean;
import javax.enterprise.inject.spi.InjectionPoint;

public class TransportFactory {
 @Produces ATMTransport createTransport(InjectionPoint injectionPoint) {

 Annotated annotated = injectionPoint.getAnnotated();

 TransportConfig transportConfig = annotated.getAnnotation(TransportConfig.cl

 StandardAtmTransport transport = new StandardAtmTransport();

 transport.setRetries(transportConfig.retries());
 return transport;

 }

}

(Side Note: we are missing a null pointer check. The annotation configuration could be null
if the user did not set it, you may want to handle this. The example is kept deliberately
short.)

The code just gets the annotation and shoves in the retires into the transport, and then just
returns the transport.

We now have a producers that can use an annotation to configure an injection.

Here is our new output:

Output

...
deposit called
communicating with bank via Standard transport retries=2

You can see our retries are there as we configured them in the annotation. Wonderful!
Annotation processing for the masses!

Ok we are done with this example. What remains is a victory lap. Let's say we had
multiple transports in a single ATM and you wanted to configure all of the outputs at once.

Let's configure the transport based on an annotation in the parent class of the injection
target, namely, AutomatedTellerMachine.

Code Listing: TransportFactory using the annotation configuration from class not field to
configure a new instance of the transport

public class TransportFactory {
 @Produces ATMTransport createTransport(InjectionPoint injectionPoint) {

 Bean<?> bean = injectionPoint.getBean();
 TransportConfig transportConfig = bean.getBeanClass().getAnnotation(Transport

 StandardAtmTransport transport = new StandardAtmTransport();

 transport.setRetries(transportConfig.retries());
 return transport;

It is an exercise for the reader to make the injection level annotation (from the last
example) override the class level annotations. As always, if you are playing along in the
home version of CDI hacker, send me your solution. Best solution gets my admiration.

Output

deposit called
communicating with bank via Standard transport retries=7

Exercise: Make the injection from the field override the injection from the class. It is a mere

matter of Java code. Send me your solution on the CDI group mailing list [5]. The first one
to send gets put on the CDI wall of fame. (All others get honorable mentions.)

Advanced Using @Nonbinding to combine a configuration annotation
and a qualifier annotation into one annotation

In the section titled *"Using @Qualfiers with members to discriminate injection and stop
the explosion of annotation creation"* we covered adding additional members to a qualifier
annotation and then in *"Advanced: Using @Produces and InjectionPoint to create
configuration annotations"* we talked about how to write an annotation to configure an
injection. Wouldn't be great if we could combine these two concepts into one annotation?

The problem is that qualifier members are used to do the discrimination. We need some
qualifier members that are not used for configuration not discrimination.

To make an qualifier member just a configuration member use @Nonbinding annotation as
follows:

Code Listing: Transport qualifier annotation using @Nonbinding to add configuration
retries param

package org.cdi.advocacy;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import javax.enterprise.util.Nonbinding;
import javax.inject.Qualifier;

@Qualifier @Retention(RUNTIME) @Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Transport {
 TransportType type() default TransportType.STANDARD;
 int priorityLevel() default -1;
 String name() default "standard";

 @Nonbinding int retries() default 5;

}

Now let's add the setRetries to the Fast Transport:

Code Listing: Transport qualifier annotation using @Nonbinding to add configuration
retries param

package org.cdi.advocacy;

@Transport(type=TransportType.STANDARD, priorityLevel=1, name="super")

public class SuperFastAtmTransport implements ATMTransport {
 private int retries=0;

public void setRetries(int retries) {
 this.retries=retries;
 }

 public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via the Super Fast transport retr
 }

}

Then we use it as follows:

public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @Transport(type=TransportType.STANDARD, priorityLevel=1, name="super", re
 private ATMTransport transport;
 ...

Ouptut

deposit called
communicating with bank via Standard transport retries=9

The final result is we have one annotation that does both qualification and configuration.
Booyah!

Exercise: There is an easter egg in this example. There is concept we talked about earlier
(in the qualifier discrimination but never added. Please find it and describe it. What are
some potential problems of using this approach? Send me your answers on the CDI group
mailing list [5]. The first one to send gets put on the CDI wall of fame. (All others get
honorable mentions.)

Advanced: Using Instance to inject transports

The use of the class Instance allows you to dynamically look up instances of a certain
type. This is the plugin architecture for the masses, built right into CDI. Grok this and you
will not only understand CDI but have a powerful weapon in your arsenal of mass
programming productivity.

These instances can be instances that are in a jar files. For example the
AutomatedTellerMachine could work with transports that did not even exist when the
AutomatedTellerMachine was created. If you don't grok that, read the last sentence again.
You are tapping into the scanning capabilities of CDI. This power is there for the taking.
The Instance class is one of the things that makes CDI so cool and flexible. In this section,
I hope to give it some justice while still keeping the example small and understandable.

Let's say we wanted to work with multiple transports. But we don't know which transport is

configured and on the classpath. It could be that the build was special for a certain type of
transport, and it just does not exist on the classpath. Suspend disbelief for a moment and
let's look at the code.

Code Listing: AutomatedTellerMachineImpl using Instance

package org.cdi.advocacy;

import java.math.BigDecimal;

import javax.annotation.PostConstruct;
import javax.enterprise.inject.Default;
import javax.enterprise.inject.Instance;
import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @Soap
 private Instance soapTransport;

 @Inject @Json
 private Instance jsonTransport;

 @Inject @Default
 private Instance defaultTransport;

 private ATMTransport transport;

 @PostConstruct
 protected void init() {
 if (!defaultTransport.isUnsatisfied()) {
 System.out.println("picked Default");
 transport = defaultTransport.iterator().next();
 } else if (!jsonTransport.isUnsatisfied()) {
 System.out.println("picked JSON");
 transport = jsonTransport.iterator().next();
 } else if (!soapTransport.isUnsatisfied()) {
 System.out.println("picked SOAP");
 transport = soapTransport.iterator().next();
 }
 }

Notice we are using *`Instance`* as the field type instead of ATMTransport. Then we look
up the actual transport. We can query a Instance with the Instance.isUnsatisfied to see
it this transport actually exist. There is an Instance.get method to retrieve a single
transport, but I used *`Instance.iterator().next()`* to highlight an important aspect of
Instance, namely, it can return more than one. For example, there could be 20 @Default

based transports in the system.

Imagine if you were implementing a chain of responsibility pattern or a command pattern,
and you wanted an easy way to discover the actions or commands that were on the
classpath. Instance would be that way. CDI makes this type of plugin development very
easy.

If it could find a single @Default, the one we have been using since the start, on the
classpath. The output from the above would be as follows:

Output

picked Default
deposit called
communicating with bank via Standard transport

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author
This article was written with CDI advocacy in mind by Rick Hightower [7] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [8].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [9], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [10] - Seam Weld [11] - Apache OpenWebBeans [12]

Now to test how the Instance.isUnsatisfied by commenting out the *`implements
ATMTransport`* in StandardAtmTransport class definition. You are essentially taking
StandardAtmTransport out of the pool of possible injection of ATMTransport. There are no
more defaults configured so it should be an unsatisfied.

Code Listing: StandardAtmTransport commenting out *`implements ATMTransport`* so
Instance.isUnsatisfied returns true

package org.cdi.advocacy;

import javax.enterprise.inject.Default;

@Default
public class StandardAtmTransport { //implements ATMTransport {

 public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via Standard transport");
 }

}

Now the output is this:

picked JSON
deposit called
communicating with bank via JSON REST transport

Reread this section if you must and make sure you understand why you get the above
output.

You can use Instance to load more than one bean as mentioned earlier. Let's lookup all
installed installed @Default transports. To setup this example remove all of the
annotations in the ATMTransport interfaces and make the beans.xml empty again (so no
Alternative is active).

Code Listing: SoapAtmTransport making it @Default by removing @Soap qualifier

package org.cdi.advocacy;

//import javax.enterprise.inject.Alternative;

//@Soap
public class SoapAtmTransport implements ATMTransport {

 public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via Soap transport");
 }

}

Code Listing: JsonRestAtmTransport making it @Default by removing @Json qualifier

package org.cdi.advocacy;

//import javax.enterprise.inject.Alternative;

//@Alternative @Json
public class JsonRestAtmTransport implements ATMTransport {

 public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via JSON REST transport");
 }

}

Code Listing: StandardAtmTransport making it @Default by removing any qualifiers from it

package org.cdi.advocacy;

//Just make sure there are no qualifiers
public class StandardAtmTransport implements ATMTransport {

public void communicateWithBank(byte[] datapacket) {
 System.out.println("communicating with bank via Standard transport");

}

}

We also need to make sure that the beans.xml file is empty.

Code Listing: *`{classpath}/META-INF/beans.xml`* removing all alternatives

Now use every transport that is installed using the annotation.

package org.cdi.advocacy;

import java.math.BigDecimal;
import java.util.Iterator;

import javax.annotation.PostConstruct;
import javax.enterprise.inject.Any;
import javax.enterprise.inject.Instance;
import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject
 private Instance allTransports;

 @PostConstruct
 protected void init() {
 System.out.println("Is this ambiguous? " + allTransports.isAmbiguous());
 System.out.println("Is this unsatisfied? " + allTransports.isUnsatisfied())
 }

 public void deposit(BigDecimal bd) {
 System.out.println("deposit called");

 for (ATMTransport transport : this.allTransports) {
 transport.communicateWithBank(null);
 }

 }

 public void withdraw(BigDecimal bd) {
 System.out.println("withdraw called");

 for (ATMTransport transport : this.allTransports) {
 transport.communicateWithBank(null);
 }

 }

}

In this context ambiguous means more than one. Therefore, CDI found more than one
possibility for injection if ambiguous returns true. It should find three defaults.

Your output should look like this (or something close to this).

Output

Is this ambiguous? true
Is this unsatisfied? false
deposit called
communicating with bank via JSON REST transport
communicating with bank via Soap transport
communicating with bank via Standard transport
communicating with bank via the Super Fast transport

Note that we changed deposit to iterate through the available instances.

Now try something new comment out the *`implements ATMTransports`* in
SuperFastAtmTransport, JsonRestAtmTransport and SoapRestAtmTransport.
JsonRestAtmTransport and SoapRestAtmTransport transport class definition should have
this *`//implements ATMTransport {`*.

Now rerun the example. You get this output.

Output

Is this ambiguous? false
Is this unsatisfied? false
deposit called
communicating with bank via Standard transport

Since the only transport left is the standard transport (StandardAtmTransport), only it is in
the output. The Instance is no longer ambiguous, there is only one so it prints false. CDI
finds the one so it is not unsatisfied.

Now comment out all of //implements ATMTransport, and you get this:

Is this ambiguous? false
Is this unsatisfied? true
deposit called

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author
This article was written with CDI advocacy in mind by Rick Hightower [7] with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast [8].
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 [9], Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi [10] - Seam Weld [11] - Apache OpenWebBeans [12]

Notice there a no longer any ATMTransport transport implementations in the system at all.

The @Any qualifier states that you want all instances of an implementation. It does not
matter what qualifiers they have, you want them all @Jsons, @Soaps, @SuperFasts,
whatever.

Add the all of the annotations we commented out back to all of the transports. Add the
@Any to the transport injection as follows:

Code Listing: AutomatedTellerMachineImpl @Inject @Any *`Instance`* to inject all
transport instances

...
import javax.enterprise.inject.Any;
...
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @Any
 private Instance allTransports;

 private ATMTransport transport;

 ...
}

The output of this should be: Output

Is this ambigous? true
Is this unsatisfied? false
deposit called
communicating with bank via JSON REST transport
communicating with bank via Soap transport
communicating with bank via Standard transport
communicating with bank via the Super Fast transport

@Any finds all of the transports in the system. Once you inject the instances into the
system, you can use the select method of instance to query for a particular type. Here is
an example of that:

Code Listing: AutomatedTellerMachineImpl using selects to find a particular transport from
the list you loaded

...
import javax.enterprise.inject.Any;
...
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @Any
 private Instance allTransports;

 private ATMTransport transport;

 @PostConstruct
 protected void init() {
 transport = allTransports.select(new AnnotationLiteral(){}).get();

 if (transport!=null) {
 System.out.println("Found standard transport");
 return;
 }

 transport = allTransports.select(new AnnotationLiteral(){}).get();

 if (transport!=null) {
 System.out.println("Found JSON standard transport");
 return;
 }

 transport = allTransports.select(new AnnotationLiteral(){}).get();

 if (transport!=null) {
 System.out.println("Found SOAP standard transport");
 return;
 }

 }

public void deposit(BigDecimal bd) {
 System.out.println("deposit called");

 transport.communicateWithBank(...);
 }

 ...
}

Here is the expected format. Output

Found standard transport
deposit called
communicating with bank via Standard transport

Now imagine there being a set of settings that are configured in a db or something and the
code might look like this to find a transport (this should look familiar to you by now).

Code Listing: AutomatedTellerMachineImpl using selects and some business logic to
decide which transport to use

package org.cdi.advocacy;

import java.math.BigDecimal;

import javax.annotation.PostConstruct;
import javax.enterprise.inject.Any;
import javax.enterprise.inject.Default;
import javax.enterprise.inject.Instance;
import javax.enterprise.util.AnnotationLiteral;
import javax.inject.Inject;
import javax.inject.Named;

@Named("atm")
public class AutomatedTellerMachineImpl implements AutomatedTellerMachine {

 @Inject @Any
 private Instance allTransports;

 private ATMTransport transport;

 //These could be looked up in a DB, JNDI or a properties file.
 private boolean useJSON = true;
 private boolean behindFireWall = true;

 @PostConstruct
 protected void init() {

 ATMTransport soapTransport, jsonTransport, standardTransport;

 standardTransport = allTransports.select(new AnnotationLiteral(){}).get();
 jsonTransport = allTransports.select(new AnnotationLiteral(){}).get();
 soapTransport = allTransports.select(new AnnotationLiteral(){}).get();

 if (!behindFireWall) {
 transport = standardTransport;
 } else {
 if (useJSON) {
 transport = jsonTransport;
 } else {
 transport = soapTransport;
 }
 }

 }

 public void deposit(BigDecimal bd) {
 System.out.println("deposit called");

 transport.communicateWithBank(...);
 }

 public void withdraw(BigDecimal bd) {
 System.out.println("withdraw called");

 transport.communicateWithBank(...);

 }

}

Exercise: Please combine the use of Instance with a producer to define the same type of
lookup but have the business logic and select lookup happen in the TrasportFactory.
Send me your answers on the CDI group mailing list [5]. The first one to send gets put on
the CDI wall of fame. (All others get honorable mentions.)

The dirty truth about CDI and Java SE

The dirty truth is this. CDI is part of JEE 6. It could easily be used outside of a JEE 6
container as these examples show. The problem is that there is no standard interface to
use CDI outside of a JEE 6 container so the three main implementations Caucho Resin
Candi [13], Red Hat JBoss Weld [11] and Apache OpenWebBeans [14] all have their own way
to run a CDI container standalone.

As part of the promotion and advocacy of CDI, we (Andy Gibson, Rob Williams, and
others) came up with a standard way to run CDI standalone. It is a small wrapper around
CDI standalone containers. It works with Resin Candi [13], Weld [11] and OpenWebBeans [14].
If you used the examples, in the CDI DI [15] or this article then you used the first artifact that
the CDISource organization put together. We plan on coming up with ways to unit test JPA

outside of the container, and a few other things. As we find holes in the CDI armor we
want to work with the community at large to fill the holes. CDI, although standard, is very
new. We are hoping that the groundwork that CDI has laid down can get used outside of
Java EE as well as inside of Java EE (we are not anti-Java EE).

Conclusion

Dependency Injection (DI) refers to the process of supplying an external dependency to a
software component.

CDI [16] is the Java standard for dependency injection and interception (AOP). It is evident
from the popularity of DI and AOP that Java needs to address DI and AOP so that it can
build other standards on top of it. DI and AOP are the foundation of many Java
frameworks. I hope you share my vision of CDI as a basis for other JSRs, Java
frameworks and standards.

This article discussed more advanced CDI dependency injection in a tutorial format. It
covered some of the features of CDI such as processing annotation data and working with
multiple instances of various types using the Instance class to tap into the powerful CDI
class scanner capabilities.

CDI is a foundational aspect of Java EE 6. It is or will be shortly supported by Caucho's
Resin, IBM's !WebSphere, Oracle's Glassfish, Red Hat's JBoss and many more
application servers. CDI is similar to core Spring and Guice frameworks. However CDI is a
general purpose framework that can be used outside of JEE 6.

CDI simplifies and sanitizes the API for DI and AOP. Through its use of Instance and
@Produces, CDI provides a pluggable architecture. With this pluggable architecture you
can write code that finds new dependencies dynamically.

CDI is a rethink on how to do dependency injection and AOP (interception really). It
simplifies it. It reduces it. It gets rid of legacy, outdated ideas.

CDI is to Spring and Guice what JPA is to Hibernate, and Toplink. CDI will co-exist with
Spring and Guice. There are plugins to make them interoperate nicely. There is more
integration option on the way.

This is just a brief taste. There is more to come.

Resources

CDI Depenency Injection Article [1]

CDI advocacy group [17]

CDI advocacy blog [18]

CDI advocacy google code project [19]

Google group for CDI advocacy [20]

Manisfesto version 1 [21]

Weld reference documentation [22]

CDI JSR299 [16]

Resin fast and light CDI and Java EE 6 Web Profile implementation [23]

CDI & JSF Part 1 Intro by Andy Gibson [24]

CDI & JSF Part 2 Intro by Andy Gibson [25]

CDI & JSF Part 3 Intro by Andy Gibson [26]

About the Author

This article was written with CDI advocacy in mind by Rick Hightower [27] with some
collaboration from others.

Rick Hightower has worked as a CTO, Director of Development and a Developer for the
last 20 years. He has been involved with J2EE since its inception. He worked at an EJB
container company in 1999. He has been working with Java since 1996, and writing code
professionally since 1990. Rick was an early Spring enthusiast [8]. Rick enjoys bouncing
back and forth between C, Python, Groovy and Java development. Although not a fan of
EJB 3 [9], Rick is a big fan of the potential of CDI and thinks that EJB 3.1 has come a lot
closer to the mark.

There are 35 code listings in this article
Subtitle:
Annotation Processing and Plugins

Source URL: http://java.dzone.com/articles/cdi-di-p2

Links:
[1] http://java.dzone.com/articles/cdi-di-p1
[2] https://jee6-cdi.googlecode.com/svn/tutorial/cdi-di-example
[3] http://code.google.com/p/jee6-cdi/wiki/MavenDITutorialInstructions
[4] http://download.oracle.com/javaee/6/api/javax/enterprise/inject/spi/InjectionPoint.html
[5] http://groups.google.com/group/cdiadvocate4j?pli=1
[6] http://download.oracle.com/javaee/6/api/index.html?javax/enterprise/inject/spi/package-summary.html
[7] http://profiles.google.com/RichardHightower/about
[8] http://java.sys-con.com/node/47735
[9] http://java.sys-con.com/node/216307
[10] http://www.caucho.com/
[11] http://seamframework.org/Weld
[12] http://openwebbeans.apache.org/1.1.0-SNAPSHOT/index.html
[13] http://www.caucho.com/resin/candi/
[14] http://openwebbeans.apache.org/owb/index.html
[15] http://code.google.com/p/jee6-cdi/wiki/rticle
[16] http://jcp.org/aboutJava/communityprocess/final/jsr299/index.html
[17] http://sites.google.com/site/cdipojo/
[18] http://cdi4jadvocate.blogspot.com/
[19] http://code.google.com/p/jee6-cdi/

[20] http://groups.google.com/group/cdiadvocate4j
[21] http://cdi4jadvocate.blogspot.com/2011/03/cdi-advocacy.html
[22] http://docs.jboss.org/weld/reference/1.1.0.Final/en-US/html/
[23] http://www.caucho.com/resin/
[24] http://www.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-in-jee-6-part-1/
[25] http://www.andygibson.net/blog/tutorial/getting-started-with-cdi-part-2-injection/
[26] http://www.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-part-3/
[27] https://profiles.google.com/RichardHightower/about

