CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

-+ JAVALOBBY

Published on Javalobby (http://java.dzone.com)
CDI Dependency Injection - Tutorial Il - Annotation Processing and Plugins

By rhightower
Created 2011/04/05 - 10:20am

lof21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

CDI provides a pluggable architecture allowing you to easily process your own
annotations. Read this article to understand the inner workings of CDI and why this JSR is
SO important.

CDI simplifies and sanitizes the API for DI and AOP like JPA did for ORMs. Through its
use of I nstance and @Pr oduces, CDI provides a pluggable architecture. This is a jaw
dropping killer feature of CDI. Master this and you start to tap into the power of CDI. The
last article 1j was just to lay the ground work to the uninitiated for this article.

This article continues our tutorial of dependency injection with CDI .

This article covers:

e How to process annotations for configuration (injection level and class level)
e How to use an annotation for both injection and configuration (@Nonbi ndi ng)
¢ Using | nst ance to manage instances of possible injection targets

e CDI's plugin architecture for the masses

With this pluggable architecture you can write code that finds new dependencies
dynamically. CDI can be a framework to write frameworks. This is why it is so important
that CDI was led through the JSR process.

Just like last time, there are some instructions on how to run the examples: Source code
for this tutorial 121, and instructions 3 for use. A programming article without working sample
code is like a sandwich with no condiments or dry toast without jelly.

Advanced CDI tutorial

The faint of heart stop here. All of the folks who want to understand the inner workings of
CDI continue. So far, we have been at the shallow, warm end of the pool. Things are about
to get a little deeper and colder. If you need to master CDI, then this article if for you. If you
don't know what CDI is then read the first CDI DI article p).

Advanced: Using @Produces and I nj ecti onPoi nt to create
configuration annotations

Our ultimate goal is to define an annotation that we can use to configure the retry count on
a transport. Essentially, we want to pass a retry count to the transport.

We want something that looks like this:

Code Listing: Transport Confi g annotations that does configuration

20f21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

@nject @ransportConfig(retries=2)
private ATMIransport transport;

(This was my favorite section to write, because | wanted to know how to create a
annotation configuration from the start.)

Before we do that we need to learn more about @Pr oduces and I nj ect i onPoi nt S. We are
going to use a producer to read information (meta-data) about an injection point. A major
inflection point for learning how to deal with annotations is the I nj ect i onPoi nt S. The
I nj ecti onPoi nt S has all the metadata we need to process configuration annotations.

An | nj ecti onPoi nt (4 iS a class that has information about an injection point. You can learn
things like what is being decorated, what the target injection type is, what the source
injection type, what is the class of the owner of the member that is being injected and so
forth.

Let's learn about passing an injection point to @Pr oduces. Below | have rewritten our
simple @Pr oduces example from the previous article , except this time | pass an
I nj ecti onPoi nt argument into the mix.

Code Listing: Transport Fact ory getting meta-data about the injection point
package org. cdi.advocacy;

i mport javax.enterprise.inject.Produces;
i mport javax.enterprise.inject.spi.lnjectionPoint;

public class TransportFactory {

@r oduces ATMIransport createTransport (I njectionPoint injectionPoint) {
Systemout. println("annotated " + injectionPoint.getAnnotated());
Systemout.println("bean " + injectionPoint.getBean());

Systemout. println("menber " + injectionPoint.getMnber());
Systemout.printin("qualifiers " + injectionPoint.getQualifiers());
Systemout.printin("type " + injectionPoint.getType());
Systemout.println("isDelegate " + injectionPoint.isDelegate());
Systemout.println("isTransient " + injectionPoint.isTransient());

return new St andar dAt mir ansport();

}
Now we just run it and see what it produces. The above produces this output. Output

annot at ed Annot at edFi el dl nmpl [private org. cdi.advocacy. ATMIt ansport org. cdi . advocacy. .
bean ManagedBeanl npl [Aut onat edTel | er Machi nel npl, { @ avax. i nject. Named(val ue=atn), @
menber private org.cdi.advocacy. ATMIransport org. cdi.advocacy. Aut omat edTel | er Machi ne
qualifiers [@efault()]

type interface org.cdi.advocacy. ATMIr ansport

i sDel egate fal se

i sTransi ent false

deposit called

comuni cating with bank via Standard transport

3of21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

It appears from the output that annot at ed tells us about the area of the program we
annotated. It also appears that bean tells us which bean the injection is happening on.

From this output you can see that the annot at ed property on the i nj ecti onPoi nt has
information about which language feature (field, constructor argument, method argument,
etc.). In our case it is the field or g. cdi . advocacy. Aut omat edTel | er Machi nel npl . transport.
is being used as the target of the injection, it is the thing that was annot at ed.

From this output you can see that the bean property of the i nj ecti onPoi nt is being used to
describe the bean whose member is getting injected. In this case, it is the
Aut omat edTel | er Machi nel npl whose is getting the field injected.

| won't describe each property, but as an exercise you can.

Exercise: Look up the I nj ecti onPoi nt in the APl documentation 4. Find out what the other
properties mean. How might you use this meta-data? Can you think of a use case or
application where it might be useful? Send me your answers on the CDI group mailing list
1. The first one to send gets put on the CDI wall of fame. (All others get honorable
mentions.)

Drilling further you can see what is in the beans and annotated properties.

Code Listing: Transport Fact ory. creat eTransport drilling further into the meta-data about
the injection point

@r oduces ATMIransport createTransport (I njectionPoint injectionPoint) {

Systemout.println("annotated " + injectionPoint.getAnnotated());
Systemout.println("bean " + injectionPoint.getBean());

Systemout. println("nmenber " + injectionPoint.getMnber());
Systemout.printin("qualifiers " + injectionPoint.getQualifiers());
Systemout.printin("type " + injectionPoint.getType());
Systemout.println("isDelegate " + injectionPoint.isDelegate());
Systemout.printin("isTransient " + injectionPoint.isTransient());

Bean<?> bean = injectionPoint. getBean();

System out. println("bean. beanCl ass " + bean. get Beand ass());
System out. println("bean.injectionPoints " + bean.getlnjectionPoints());
System out. println("bean.nane " + bean. get Nane());
Systemout.println("bean.qualifiers " + bean.getQualifiers());

System out. println("bean.scope " + bean. get Scope());

System out. println("bean. stereotypes " + bean. getStereotypes());

System out. println("bean.types " + bean. get Types());

Annot at ed annotated = injectionPoint. get Annotated();

System out. println("annotated. annotations " + annot ated. get Annotations());
System out. println("annot at ed. annot ati ons + annot at ed. get BaseType());
System out. println("annot ated.typed osure + annot at ed. get TypeC osure());

return new Standar dAt mir ansport();

}

Now we are cooking with oil. Throw some gas on that flame. Look at the wealth of
information that the I nj ecti onPoi nt defines.

4 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

Output

bean. beanC ass cl ass org. cdi . advocacy. Aut omat edTel | er Machi nel npl

bean. i njectionPoints [InjectionPointlnpl[private org.cdi.advocacy. ATMIransport org.c
bean. name atm

bean. qualifiers [@avax.inject.Naned(val ue=atn), @efault(), @wny()]

bean. scope interface javax.enterprise.context.Dependent

bean. st ereotypes []

bean. types [cl ass org. cdi.advocacy. Aut onat edTel | er Machi nel npl, interface org.cdi.adv
annot at ed. annot ati ons AnnotationSet[@avax.inject.lnject()]

annot at ed. annotati ons interface org. cdi.advocacy. ATMIT ansport

annot at ed. typeC osure [interface org.cdi.advocacy. ATMIransport, class java.lang. Obje

We see that bean. beand ass gives up the class of the bean that is getting the injected field.
Remember that one, we will use it later.

We can see that bean. qual i fi ers gives up the list of qualifiers for the
Aut omat edTel | er Machi nel npl .

We can also see that annot at ed. annot at i ons gives us the list of annotations that are
associated with the injected field. We will use this later to pull the configuration annotation
and configure the transport with it.

Exercise: Look up the Bean and Annot at ed in the APl documentation . Find out what the
other properties mean. How might you use this meta-data? Can you think of a use case or
application where it might be useful? Send me your answers on the CDI group mailing list
1. The first one to send gets put on the CDI wall of fame. (All others get honorable
mentions.)

Ok now that we armed with an idea of what an I nj ect i on point is. Let's get configuring our
transport.

First let's define an Transport Conf i g annotation. This is just a plain runtime annotation as
follows:

Code Listing: Transport Confi g an annotation used for configuration

package org. cdi.advocacy;

i mport java.lang. annotation. Retenti on;

i mport java.lang. annot ati on. Target;

import static java.lang.annotation. El ement Type. *;

i mport static java.lang.annotation. RetentionPolicy.*;

@Ret enti on(RUNTI ME) @arget ({ TYPE, METHOD, FIELD, PARAMETER})
public @nterface TransportConfig {

int retries() default 5;
}

Notice that this annotation has one member retries, which we will use to configure the

5o0f 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

ATMTr ansport (transport).

Now go ahead and use this to decorate the injection point as follows:

Code Listing: Aut omat edTel | er Machi nel npl using Tr anspor t Conf i g to configure retries

public class AutomatedTel | er Machi nel npl i npl enents Automat edTel | er Machi ne {

@nject @ransportConfig(retries=2)
private ATMIransport transport;

Once it is configured when you run it, you will see the following output from our producer:

Output

annot at ed. annot ati ons Annotati onSet[@avax.inject.lnject(), @rg.cdi.advocacy. Transp

This means the annotation data is there. We just need to grab it and use it. Stop and
ponder on this a bit. This is pretty cool. The producer allows me to customize how
annotations are consumed. This is powerful stuff and one of the many extension points
available to CDI. CDI was meant to be extensible. It is the first mainstream framework that
encourages you to consume your own annotation data. This not some obscure framework
feature. This is in the main usage.

Please recall that the i nj ecti onPoi nt . annot at ed. annot at i ons gives us the list of
annotations that are associated with the injected field, namely, the transport field of the

Aut omat edTel | er Machi nel npl . Now we can use this to pull the configuration annotation and
configure the transport with it. The party is rolling now.

Now we need to change the transport implementations to handle setting retires. Since this
is an example, I will do this simply by adding a new setter method for retires (set Retri es)
to the ATMIT anport interface like so:

Code Listing: ATMIr ansport adding a retries property

package org. cdi.advocacy;
public interface ATMIransport {

public void comruni cat eWt hBank(byte[] datapacket);
public void setRetries(int retries);

Then we need to change each of the transports to handle this new ret ri es property as
follows:

Code Listing: st andar dAt niTr anspor t adding a retries property

package org. cdi.advocacy;

6 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

7 of 21

public class StandardAtnilransport inplements ATMIransport {
private int retries;

public void setRetries(int retries) {
this.retries = retries;
}

public void comruni cateWt hBank(byte[] datapacket) {
System out. println("comrunicating with bank via Standard transport retries="
}

}

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author

This article was written with CDI advocacy in mind by Rick Hightower 7 with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast (s.
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 19, Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi o - Seam Weld 111 - Apache OpenWebBeans 2

Now we just change the producer to grab the new annotation and configure the transport
as follows: (For clarity | took out all of the Sysout.prinltns.)

Code Listing: Transport Fact ory using the annotation configuration to configure a new
instance of the transport

package org. cdi.advocacy;
i mport javax.enterprise.inject.spi.Annotated;
i mport javax.enterprise.inject.spi.Bean;

i mport javax.enterprise.inject.spi.lnjectionPoint;

public class TransportFactory {
@r oduces ATMIr ansport createTransport (I njectionPoint injectionPoint) {

Annot at ed annotated = injectionPoint. get Annotated();

Transport Config transport Config = annot at ed. get Annot ati on(Transport Config.c

St andar dAt nffr ansport transport = new Standar dAt nifransport();

transport.setRetries(transportConfig.retries());
return transport;

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

8 of 21

(Side Note: we are missing a null pointer check. The annotation configuration could be null
if the user did not set it, you may want to handle this. The example is kept deliberately
short.)

The code just gets the annotation and shoves in the retires into the transport, and then just
returns the transport.

We now have a producers that can use an annotation to configure an injection.
Here is our new output:

Output

deposit called
comuni cating with bank via Standard transport retries=2

You can see our retries are there as we configured them in the annotation. Wonderful!
Annotation processing for the masses!

Ok we are done with this example. What remains is a victory lap. Let's say we had
multiple transports in a single ATM and you wanted to configure all of the outputs at once.

Let's configure the transport based on an annotation in the parent class of the injection
target, namely, Aut omat edTel | er Machi ne.

Code Listing: Transport Fact ory using the annotation configuration from class not field to
configure a new instance of the transport

public class TransportFactory {
@r oduces ATMIransport createTransport (I njectionPoint injectionPoint) {

Bean<?> bean = injectionPoint. getBean();
Transport Confi g transport Config = bean. get BeanC ass(). get Annot ati on(Tr anspor"

St andar dAt nffransport transport = new Standar dAt nilransport();

transport.setRetries(transportConfig.retries());
return transport;

It is an exercise for the reader to make the injection level annotation (from the last
example) override the class level annotations. As always, if you are playing along in the
home version of CDI hacker, send me your solution. Best solution gets my admiration.

Output

deposit called
conmuni cating with bank via Standard transport retries=7

Exercise: Make the injection from the field override the injection from the class. It is a mere

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

9of 21

matter of Java code. Send me your solution on the CDI group mailing list s;. The first one
to send gets put on the CDI wall of fame. (All others get honorable mentions.)

Advanced Using @Nonbinding to combine a configuration annotation
and a qualifier annotation into one annotation

In the section titled *'"Using @Qualfiers with members to discriminate injection and stop
the explosion of annotation creation"* we covered adding additional members to a qualifier
annotation and then in *"Advanced: Using @Produces and InjectionPoint to create
configuration annotations™* we talked about how to write an annotation to configure an
injection. Wouldn't be great if we could combine these two concepts into one annotation?

The problem is that qualifier members are used to do the discrimination. We need some
gualifier members that are not used for configuration not discrimination.

To make an qualifier member just a configuration member use @Nonbi ndi ng annotation as
follows:

Code Listing: Transport qualifier annotation using @Nonbi ndi ng to add configuration
retries param

package org. cdi.advocacy;

i mport java.lang. annotation. Retenti on;

i mport java.lang. annot ati on. Target;

i mport static java.lang. annotati on. El enment Type. *;
import static java.lang.annotation. RetentionPolicy.*;
i mport javax.enterprise.util.Nonbinding;

i mport javax.inject.Qalifier;

@ualifier @retention(RUNTIME) @arget({TYPE, METHOD, FIELD, PARAMETER})
public @nterface Transport {

Transport Type type() default Transport Type. STANDARD;

int priorityLevel () default -1;

String nane() default "standard";

@\onbi nding int retries() default 5;

}

Now let's add the set Ret ri es to the Fast Transport:

Code Listing: Transport qualifier annotation using @Nonbi ndi ng to add configuration
retries param

package org. cdi.advocacy;

@ransport (type=Transport Type. STANDARD, prioritylLevel =1, name="super")

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

10 of 21

public class SuperFast At miransport inplements ATMITansport {
private int retries=0;

public void setRetries(int retries) {
this.retries=retries;

public void comruni cateWt hBank(byte[] datapacket) {
System out. println("comrunicating with bank via the Super Fast transport ret
}

Then we use it as follows:
public class AutomatedTel | er Machi nel npl inpl enents Aut omat edTel | er Machi ne {

@nject @ransport (type=Transport Type. STANDARD, prioritylLevel =1, nane="super", r
private ATMIransport transport;

Ouptut

deposit called
conmuni cating with bank via Standard transport retries=9

The final result is we have one annotation that does both qualification and configuration.
Booyah!

Exercise: There is an easter egg in this example. There is concept we talked about earlier
(in the qualifier discrimination but never added. Please find it and describe it. What are
some potential problems of using this approach? Send me your answers on the CDI group
mailing list (5. The first one to send gets put on the CDI wall of fame. (All others get
honorable mentions.)

Advanced: Using Instance to inject transports

The use of the class I nst ance allows you to dynamically look up instances of a certain
type. This is the plugin architecture for the masses, built right into CDI. Grok this and you
will not only understand CDI but have a powerful weapon in your arsenal of mass
programming productivity.

These instances can be instances that are in a jar files. For example the

Aut omat edTel | er Machi ne could work with transports that did not even exist when the

Aut omat edTel | er Machi ne was created. If you don't grok that, read the last sentence again.
You are tapping into the scanning capabilities of CDI. This power is there for the taking.
The I nst ance class is one of the things that makes CDI so cool and flexible. In this section,
| hope to give it some justice while still keeping the example small and understandable.

Let's say we wanted to work with multiple transports. But we don't know which transport is

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

configured and on the classpath. It could be that the build was special for a certain type of
transport, and it just does not exist on the classpath. Suspend disbelief for a moment and
let's look at the code.

Code Listing: Aut omat edTel | er Machi nel npl uSing I nst ance
package org. cdi.advocacy;
i mport java. mat h. Bi gDeci mal ;

i mport javax.annotati on. Post Construct;

i mport javax.enterprise.inject.Default;
i mport javax.enterprise.inject.lnstance;
i mport javax.inject.l|nject;

i mport javax.inject.Naned,

@Named("atm')
public class AutomatedTel | er Machi nel npl i npl ements Aut omat edTel | er Machi ne {

@ nj ect @poap
private |Instance soapTransport;

@ nject @son
private Instance jsonTransport;

@nject @efault

private Instance defaultTransport;
private ATMIransport transport;

@ ost Const ruct
protected void init() {
if (!defaultTransport.isUnsatisfied()) {
Systemout. println("picked Default");
transport = defaultTransport.iterator().next();
} else if (!jsonTransport.isUnsatisfied()) {
System out. println("picked JSON');
transport = jsonTransport.iterator().next();
} else if (!soapTransport.isUnsatisfied()) {
System out. println("picked SOAP");
transport = soapTransport.iterator().next();

Notice we are using *'Instance * as the field type instead of ATMIr ansport . Then we look
up the actual transport. We can query a | nst ance with the I nst ance. i sUnsati sfi ed to see
it this transport actually exist. There is an | nst ance. get method to retrieve a single
transport, but | used *'Instance.iterator().next() * to highlight an important aspect of

| nst ance, namely, it can return more than one. For example, there could be 20 @Def aul t
based transports in the system.

Imagine if you were implementing a chain of responsibility pattern or a command pattern,
and you wanted an easy way to discover the actions or commands that were on the
classpath. 1 nst ance would be that way. CDI makes this type of plugin development very
easy.

11of21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

If it could find a single @Def aul t , the one we have been using since the start, on the
classpath. The output from the above would be as follows:

Output

pi cked Defaul t
deposit called
comuni cating with bank via Standard transport

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author

This article was written with CDI advocacy in mind by Rick Hightower . with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast (s.
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 19, Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi o - Seam Weld 111 - Apache OpenWebBeans 2

Now to test how the I nst ance. i sUnsati sfi ed by commenting out the *'implements
ATMTransport™ in StandardAtmTransport class definition. You are essentially taking

St andar dAt nilr anspor t out of the pool of possible injection of ATMITr ansport . There are no
more defaults configured so it should be an unsatisfied.

Code Listing: st andar dAt nilr ansport commenting out *'implements ATMTransport™* so
I nstance. i sUnsati sfi ed returns true

package org. cdi.advocacy;
i mport javax.enterprise.inject.Default;

@ef aul t
public class StandardAt miransport { //inplenments ATMIransport {

public void comruni cateWt hBank(byte[] datapacket) {
System out. println("communi cating with bank via Standard transport");
}

Now the output is this:
pi cked JSON

deposit called
conmuni cating with bank via JSON REST transport

Reread this section if you must and make sure you understand why you get the above
output.

12 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

You can use I nst ance to load more than one bean as mentioned earlier. Let's lookup all
installed installed @Def aul t transports. To setup this example remove all of the
annotations in the ATMIr ansport interfaces and make the beans.xml empty again (so no
Al ternative IS active).

Code Listing: SoapAt nilr ansport making it @Def aul t by removing @Soap qualifier
package org. cdi.advocacy;

/linport javax.enterprise.inject.Aternative;

/| @soap
public class SoapAtniTransport inplenments ATMIr ansport {

public void comruni cateWt hBank(byte[] datapacket) {
System out. println("communi cating with bank via Soap transport");
}

Code Listing: JsonRest At niTr anspor t making it @Def aul t by removing @Json qualifier
package org. cdi.advocacy;
/[linport javax.enterprise.inject.Aternative;

// @\ ternative @son
public class JsonRest At mlransport inplenents ATMIransport {

public void comruni cat eWt hBank(byte[] datapacket) {
System out. println("comrunicating with bank via JSON REST transport");
}

Code Listing: St andar dAt nifr anspor t making it @Def aul t by removing any qualifiers from it

package org. cdi.advocacy;

/1 Just nmake sure there are no qualifiers
public class StandardAt miransport inplenents ATMITansport {

public void conmuni cat eWt hBank(byte[] datapacket) {
System out . println("communi cating with bank via Standard transport");

}

We also need to make sure that the beans. xni file is empty.

Code Listing: **{classpath}/META-INF/beans.xml* removing all alternatives

13 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

Now use every transport that is installed using the annotation.
package org. cdi.advocacy;

i mport java. mat h. Bi gDeci mal ;
i mport java.util.lterator;

i mport javax.annotati on. Post Construct;

i mport javax.enterprise.inject.Any;

i mport javax.enterprise.inject.I|nstance;
i mport javax.inject.l|nject;

i mport javax.inject.Naned,

@Named("atm')
public class AutomatedTel | er Machi nel npl inpl enents Aut omat edTel | er Machi ne {

@ nj ect
private Instance all Transports;

@ost Const ruct

protected void init() {
Systemout.printin("ls this anbiguous? " + all Transports.i sAnbi guous());
Systemout.printin("ls this unsatisfied? " + all Transports.isUnsatisfied())

}

public void deposit(BigDecimal bd) {
Systemout. println("deposit called");

for (ATMIransport transport : this.allTransports) {
transport.conmuni cat eWt hBank(nul |)
}

}

public void w thdraw Bi gDeci mal bd) {
Systemout. println("w thdraw called");

for (ATMIransport transport : this.all Transports) {
transport. comruni cat eWt hBank(nul I')
}

}

In this context ambiguous means more than one. Therefore, CDI found more than one
possibility for injection if ambiguous returns true. It should find three defaults.

Your output should look like this (or something close to this).

Output

I's this anbi guous? true

I's this unsatisfied? fal se

deposit called

comuni cating wi th bank via JSON REST transport
conmuni cating with bank via Soap transport

conmuni cating with bank via Standard transport
conmuni cating with bank via the Super Fast transport

14 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

Note that we changed deposit to iterate through the available instances.

Now try something new comment out the * implements ATMTransports™* in

Super Fast At nilr anspor t , JsonRest At nTr ansport and SoapRest At milt ansport .

JsonRest At nilr ansport and SoapRest At niTr anspor t transport class definition should have
this **//implements ATMTransport {"*.

Now rerun the example. You get this output.

Output

I's this anbi guous? false

Is this unsatisfied? fal se

deposit called

conmuni cating with bank via Standard transport

Since the only transport left is the standard transport (St andar dAt nilr ansport), only it is in
the output. The I nst ance is no longer ambiguous, there is only one so it prints false. CDI
finds the one so it is not unsatisfied.

Now comment out all of //implements ATMTransport, and you get this:

I's this anbi guous? false
I's this unsatisfied? true
deposit called

Continue reading... Click on the navigation links below the author bio. to read the other
pages of this article.

About the author

This article was written with CDI advocacy in mind by Rick Hightower 71 with some
collaboration from others. Rick Hightower has worked as a CTO, Director of Development
and a Developer for the last 20 years. He has been involved with J2EE since its inception.
He worked at an EJB container company in 1999. He has been working with Java since
1996, and writing code professionally since 1990. Rick was an early Spring enthusiast .
Rick enjoys bouncing back and forth between C, Python, Groovy and Java development.

Although not a fan of EJB 3 9}, Rick is a big fan of the potential of CDI and thinks that EJB
3.1 has come a lot closer to the mark.

CDI Implementations - Resin Candi 0 - Seam Weld 1 - Apache OpenWebBeans 112
Notice there a no longer any ATMTransport transport implementations in the system at all.
The @Any qualifier states that you want all instances of an implementation. It does not
matter what qualifiers they have, you want them all @Jsons, @SoapS, @Super Fast S,

whatever.

Add the all of the annotations we commented out back to all of the transports. Add the
@aAny to the transport injection as follows:

Code Listing: Aut omat edTel | er Machi nel npl @I nj ect @Any *'Instance * to inject all
transport instances

15 0f 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

i mport javax.enterprise.inject.Any;
public class AutomatedTel | er Machi nel npl i npl enents Automat edTel | er Machi ne {

@ nj ect @ny
private Instance all Transports;

private ATMIransport transport;

The output of this should be: Output

I's this anbi gous? true

Is this unsatisfied? fal se

deposit called

comuni cating w th bank via JSON REST transport
conmuni cating with bank via Soap transport

conmuni cating with bank via Standard transport
conmuni cating with bank via the Super Fast transport

@Any finds all of the transports in the system. Once you inject the instances into the
system, you can use the sel ect method of i nst ance to query for a particular type. Here is
an example of that:

Code Listing: Aut omat edTel | er Machi nel npl using selects to find a particular transport from
the list you loaded

i mport javax.enterprise.inject.Any;
public class AutomatedTel | er Machi nel npl i npl enents Aut omat edTel | er Machi ne {

@ nj ect @ny
private Instance all Transports;

private ATMIransport transport;

@rost Const r uct
protected void init() {
transport = all Transports. sel ect(new AnnotationLiteral (){}).get();

if (transport!=null) {
System out. println("Found standard transport");
return;

}

transport = all Transports. sel ect(new AnnotationLiteral (){}).get();

if (transport!=null) {
System out. println("Found JSON standard transport");
return;

16 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a...

17 of 21

http://java.dzone.com/print/37865

transport = all Transports. sel ect(new AnnotationLiteral (){}).get();

if (transport!=null) {

System out .
return;

public void dep

println("Found SOAP standard transport");

osi t(Bi gbeci mal bd) {

Systemout. println("deposit called");

transport. commu

ni cat ewWt hBank(...);

Here is the expected format. Output

Found standard transport
deposit called
comuni cating with bank via Standard transport

Now imagine there being a set of settings that are configured in a db or something and the
code might look like this to find a transport (this should look familiar to you by now).

Code Listing: Aut omat edTel | er Machi nel npl using selects and some business logic to
decide which transport to use

package org. cdi.advocacy;

i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava. mat h. Bi gDec

j avax. annot ati on
j avax. enterprise
j avax. enterprise
j avax. enterprise

j avax. enterprise

i mal ;

. Post Construct;
.inject. Any;

.inject. Default;
.inject.Instance;
.util.AnnotationLiteral

javax.inject.Inject;
j avax. i nj ect . Naned;

@Named("atm')
public class AutomatedTel | er Machi nel npl inpl enents Aut omat edTel | er Machi ne {

@ nj ect @\ny

private Instance all Transports;

private ATMIransport transport;

// These could be | ooked up in a DB, JNDI or a properties file.
private bool ean useJSON = true;
private bool ean behindFirevall = true

@rost Const r uct
protected void init() {

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

18 of 21

ATMIr ansport soapTransport, jsonTransport, standardTransport;

standardTransport = all Transports. sel ect(new AnnotationLiteral (){}).get();
jsonTransport = all Transports. sel ect(new AnnotationLiteral (){}).get();
soapTransport al | Transports. sel ect (new AnnotationLiteral (){}).get();

if (!behindFirevall) {
transport = standardTransport;
} else {

if (useJSON) {

transport = jsonTransport;
} else {

transport = soapTransport;
}

public void deposit(BigDeci mal bd) {
Systemout.println("deposit called");

transport.communi cat eWt hBank(...);

}

public void w thdraw Bi gDeci mal bd) {
Systemout. println("w thdraw called");

transport.communi cat eWt hBank(...);

Exercise: Please combine the use of Instance with a producer to define the same type of
lookup but have the business logic and select lookup happen in the Trasport Factory.
Send me your answers on the CDI group mailing list 5. The first one to send gets put on
the CDI wall of fame. (All others get honorable mentions.)

The dirty truth about CDI and Java SE

The dirty truth is this. CDI is part of JEE 6. It could easily be used outside of a JEE 6
container as these examples show. The problem is that there is no standard interface to
use CDI outside of a JEE 6 container so the three main implementations Caucho Resin
Candi 13, Red Hat JBoss Weld 1y and Apache OpenWebBeans 14 all have their own way
to run a CDI container standalone.

As part of the promotion and advocacy of CDI, we (Andy Gibson, Rob Williams, and
others) came up with a standard way to run CDI standalone. It is a small wrapper around
CDI standalone containers. It works with Resin Candi 3, Weld 117 and OpenWebBeans 4.
If you used the examples, in the CDI DI 5 or this article then you used the first artifact that
the CDISource organization put together. We plan on coming up with ways to unit test JPA

4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

outside of the container, and a few other things. As we find holes in the CDI armor we
want to work with the community at large to fill the holes. CDI, although standard, is very
new. We are hoping that the groundwork that CDI has laid down can get used outside of
Java EE as well as inside of Java EE (we are not anti-Java EE).

Conclusion

Dependency Injection (DI) refers to the process of supplying an external dependency to a
software component.

CDI g is the Java standard for dependency injection and interception (AOP). It is evident
from the popularity of DI and AOP that Java needs to address DI and AOP so that it can
build other standards on top of it. DI and AOP are the foundation of many Java
frameworks. | hope you share my vision of CDI as a basis for other JSRs, Java
frameworks and standards.

This article discussed more advanced CDI dependency injection in a tutorial format. It
covered some of the features of CDI such as processing annotation data and working with
multiple instances of various types using the I nst ance class to tap into the powerful CDI
class scanner capabilities.

CDl is a foundational aspect of Java EE 6. It is or will be shortly supported by Caucho's
Resin, IBM's IWebSphere, Oracle's Glassfish, Red Hat's JBoss and many more
application servers. CDI is similar to core Spring and Guice frameworks. However CDI is a
general purpose framework that can be used outside of JEE 6.

CDI simplifies and sanitizes the API for DI and AOP. Through its use of I nst ance and
@Produces, CDI provides a pluggable architecture. With this pluggable architecture you
can write code that finds new dependencies dynamically.

CDl is a rethink on how to do dependency injection and AOP (interception really). It
simplifies it. It reduces it. It gets rid of legacy, outdated ideas.

CDl is to Spring and Guice what JPA is to Hibernate, and Toplink. CDI will co-exist with
Spring and Guice. There are plugins to make them interoperate nicely. There is more
integration option on the way.

This is just a brief taste. There is more to come.

Resources

e CDI Depenency Injection Article

19 of 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

CDI advocacy group (17
CDI advocacy blog [1s

CDI advocacy google code project o

Gooagle group for CDI advocacy [0

Manisfesto version 1 2y

Weld reference documentation 2z

CDI JSR299 116

Resin fast and light CDI and Java EE 6 Web Profile implementation 23
CDI & JSF Part 1 Intro by Andy Gibson 24

CDI & JSF Part 2 Intro by Andy Gibson pzs]

CDI & JSF Part 3 Intro by Andy Gibson 126

About the Author

This article was written with CDI advocacy in mind by Rick Hightower 127 with some
collaboration from others.

Rick Hightower has worked as a CTO, Director of Development and a Developer for the
last 20 years. He has been involved with J2EE since its inception. He worked at an EJB
container company in 1999. He has been working with Java since 1996, and writing code
professionally since 1990. Rick was an early Spring enthusiast g. Rick enjoys bouncing
back and forth between C, Python, Groovy and Java development. Although not a fan of
EJB 3 i, Rick is a big fan of the potential of CDI and thinks that EJB 3.1 has come a lot
closer to the mark.

There are 35 code listings in this article
Subtitle:
Annotation Processing and Plugins

Source URL: http://java.dzone.com/articles/cdi-di-p2

Links:

[1] http://java.dzone.com/articles/cdi-di-p1

[2] https://jee6-cdi.googlecode.com/svn/tutorial/cdi-di-example

[3] http://code.google.com/p/jee6-cdi/wiki/MavenDITutoriallnstructions

[4] http://download.oracle.com/javaee/6/api/javax/enterprise/inject/spi/lnjectionPoint.html
[5] http://groups.google.com/group/cdiadvocate4?pli=1

[6] http://download.oracle.com/javaee/6/api/index.html?javax/enterprise/inject/spi/package-summary.html
[7] http://profiles.google.com/RichardHightower/about

[8] http://java.sys-con.com/node/47735

[9] http://java.sys-con.com/node/216307

[10] http://www.caucho.com/

[11] http://seamframework.org/Weld

[12] http://openwebbeans.apache.org/1.1.0-SNAPSHOT/index.html

[13] http://www.caucho.com/resin/candi/

[14] http://lopenwebbeans.apache.org/owb/index.html

[15] http://code.google.com/p/jee6-cdi/wiki/rticle

[16] http://jcp.org/aboutJava/communityprocess/final/jsr299/index.html

[17] http://sites.google.com/site/cdipojo/

[18] http://cdidjadvocate.blogspot.com/

[19] http://code.google.com/pljee6-cdi/

200f 21 4/5/11 6:12 PM

CDI Dependency Injection - Tutorial Il - Annotation Processing a... http://java.dzone.com/print/37865

[20] http://groups.google.com/group/cdiadvocate4;

[21] http://cdid4jadvocate.blogspot.com/2011/03/cdi-advocacy.html

[22] http://docs.jboss.org/weld/reference/1.1.0.Final/en-US/html/

[23] http://www.caucho.com/resin/

[24] http://lwww.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-in-jee-6-part-1/
[25] http://lwww.andygibson.net/blog/tutorial/getting-started-with-cdi-part-2-injection/

[26] http://iwww.andygibson.net/blog/tutorial/getting-started-with-jsf-2-0-and-cdi-part-3/

[27] https://profiles.google.com/RichardHightower/about

21o0f21 4/5/11 6:12 PM

